

B.M.S. College of Engineering
Department of Medical Electronics Engineering

Basics of Magnetic Resonance Imaging

Prof. Vikram Kodibagkar

**Arizona State University,
USA**

Prof. Vikram Kodibagkar

Prof. Vikram Kodibagkar, Professor at the School of Biological and Health Systems Engineering, Arizona State University, is an expert in MRI physics and molecular imaging. This talk demystifies the principles behind MRI technology, exploring magnetic fields, resonance, and image formation to bridge engineering with healthcare innovation.

**November 10 and 12, 2025
8 PM – 9 PM**

Coordinator:

Dr. Abhishek Appaji
abhishek.ml@bmsce.ac.in

ASU **PrBE** Prognostic Bioengineering Laboratory

Effect of magnetic fields on spins

No external magnetic field In external magnetic field \mathbf{B}_0

We write $\Delta E = \hbar\omega_0$, where $\omega_0 = \gamma B_0$
 Remember, "angular" frequency (ω) = $2 \pi \times$ frequency (f or v)

Vikram Kodibagkar ...

AA

ASU **PrBE** Prognostic Bioengineering Laboratory

Effect of magnetic fields on spins

No external magnetic field In external magnetic field \mathbf{B}_0

We write $\Delta E = \hbar\omega_0$, where $\omega_0 = \gamma B_0$
 Remember, "angular" frequency (ω) = $2 \pi \times$ frequency (f or v)

Spins to Signal

- Want to study the sample by "talking" to nuclear spins
- "Magnetize" the sample by placing in a powerful magnetic field B_0
- Magnetic moment of the magnetized sample can precess around B_0
- And then what? How does this help us probe the sample?
- Faraday to the rescue!
- Precessing magnetic fields induce voltages which can be detected

Vikram Kodibagkar ...

AA

Vikram Kodibagkar ...

Vikram Kodibagkar ...

P

MA

Vikram Kodibag...

AA

HC

MA

Vikram Kodib...

Field	Detail
Talk Title:	Basics of Magnetic Resonance Imaging
Speaker:	Prof. Vikram Kodibagkar, Ph.D.
Speaker Affiliation:	Professor, School of Biological and Health Systems Engineering, Arizona State University (USA)
Organized By:	Department of Medical Electronics Engineering, B.M.S. College of Engineering, Bengaluru
Date & Time:	Part 1: Monday, November 10, 2025 (8:00 PM – 9:00 PM IST)
	Part 2: Wednesday, November 12, 2025 (8:00 PM – 9:00 PM IST)
Format:	Virtual Talk
Target Audience:	Students, researchers, and faculty in Medical Electronics, Bioengineering, Physics, and related healthcare technology fields.

The talk was significant as it bridges the gap between fundamental physics and clinical engineering applications, which is highly relevant to students in Medical Electronics.

Attendees gained:

- A solid theoretical foundation in MRI technology.
- An appreciation for how technical parameters influence image quality and diagnostic information.
- Insight into cutting-edge research directions in biomedical imaging and probe development, particularly related to measuring tissue health (e.g., oxygenation and metabolism).