Medical Software
Testing
FDA

Abhishek Appaji

Why Software
Validation

............. .
Ilntroduction

Tasks

Principles

Activities and

Automated
Process
Equipment &
Qulaity Software

Usage

e Software used as a component, part, or accessory of a medical device;

e Software that is itself a medical device (e.g., blood establishment
software);

e Software used in the production of a device (e.g., programmable logic
controllers in manufacturing equipment); and

e Software used in implementation of the device manufacturer's quality
system (e.g., software that records and maintains the device history
record).

Regulatory requirements for Software Validation

e 3140 medical device recalls conducted between 1992 and 1998

o 242 (7.7%) are software failures.

e 192 (79%) were caused by software defects after its initial production and
distribution.

e Device production process or quality system should be validated

e Component acceptance, manufacturing, labeling, packaging, distribution,
complaint handling, or to automate any other aspect of the quality
system.

e create, modify, and maintain electronic records and to manage electronic
signatures

e validated to ensure accuracy, reliability, consistent intended performance,
and the ability to discern invalid or altered records.

"0off-the-shelf” software

Even this has to be validated

Why software validation

Establish - Define, document and implement
Requirement - Need or expectation for a system or software
e.g., design, functional, implementation, interface, performance, or physical requirements

Specification - Document that states requirement

include drawings, patterns, or other relevant documents

System requirements specification, software requirements specification, software design
specification, software test specification, software integration specification, etc

Verification & Validation

Verification

objective evidence that the design outputs of
a particular phase of the software
development life cycle meet all of the
specified requirements

consistency, completeness, and correctness
of the software and its supporting
documentation,

Ex: static and dynamic analyses, code and
document inspections, walkthroughs, etc

Validation

confirmation by examination and provision of
objective evidence that software specifications
conform to user needs and intended uses, and
that the particular requirements implemented
through software can be consistently fulfilled.

During and at the end of the software
development life cycle

comprehensive software testing, inspections,
analyses, and other verification tasks performed
at each stage

Testing of device software functionality in a
simulated use environment, and user site
testing are typically included as components of
an overall design validation program for a
software automated device

Software Testing - level of confidence

Measures such as defects found in specifications documents, estimates of
defects remaining, testing coverage, and other techniques are all used to
develop an acceptable level of confidence before shipping the product

will vary depending upon the safety risk (hazard) posed by the automated
functions of the device

Installation / Operational / Performance Qualification

IQ
OoQ
PQ

Software development as part of system design

software validation must be considered within the context of the overall
design validation for the system

demonstrate that completed software products comply with documented
software and system requirements

confirmation of conformance to all software specifications

Confirmation of software requirements are traceable to the system
specifications.

Software vs Hardware

Software doesn’t wear out unlike hardware

May improve over age

But continuous update may counter new problem

Software failure can occur without warning unlike hardware
Changes in software is easy and faster

Because of its complexity, the development process for software should be
even more tightly controlled than for hardware, in order to prevent problems
that cannot be easily detected later in the development process.

Software vs Hardware

Little changes can bring unexpected and significant problems elsewhere
Documentation is important to debug by someone else in future

Software changes are not standardized or interchangeable

In summary,

software engineering needs an even greater level of managerial scrutiny and
control than does hardware engineering.

Software is different from Hardware

Software Hardware

Errors easily traceable during design and dev Tough to debug

Quality depends on design and Dev Quality depends on design, dev & manufacturing
Reproduction is easy (copy/paste) Reproduction is tough

Meeting specification is tough Meeting specs is comparatively easy

Branching is easy (parallel execution) but
complex

Testing alone cannot verify software to be
complete or correct

Benefits of software validation

assure the quality of device software and software automated operations
increase the usability and reliability of the device,

resulting in decreased failure rates,

fewer recalls and corrective actions,

less risk to patients and users,

reduced liability to device manufacturers

reduce long term costs

Design Review

Documented, comprehensive, and systematic examinations of a design
to evaluate the adequacy of the design requirements,

to evaluate the capability of the design to meet these requirements, and
to identify problems

separately for the software, after the software is integrated with the hardware into the
system, or both.

include examination of development plans, requirements specifications, design
specifications, testing plans and procedures, all other documents and activities
associated with the project, verification results from each stage of the defined life cycle,
and validation results

Design Review ...

primary tool for managing and evaluating development projects
it is recommended that multiple design reviews be conducted

Formal design review is especially important at or near the end of the
requirements activity, before major resources have been committed to
specific design solutions

Design Review... should answer

Have the appropriate tasks and expected results, outputs, or products been
established for each software life cycle activity?

Do the tasks and expected results, outputs, or products of each software life
cycle activity:

Comply with the requirements of other software life cycle activities in
terms of correctness, completeness, consistency, and accuracy?

Satisfy the standards, practices, and conventions of that activity?

Establish a proper basis for initiating tasks for the next software life cycle
activity?

Principles of Software Validation

Defect Prevention

Software testing is a necessary activity.

However, in most cases software testing by itself is not sufficient to establish
confidence that the software is fit for its intended use.

development environment, application, size of project, language, and risk.

begin early, i.e., during design and development planning and design input.

Software Life Cycle

the software life cycle contains specific verification and validation tasks that
are appropriate for the intended use of the software.

plan defines “what” is to be accomplished through the software validation
effort.

Software validation plans specify areas such as scope, approach, resources,
schedules and the types and extent of activities, tasks, and work items.

Software Change

Whenever software is changed, a validation analysis should be conducted not
just for validation of the individual change, but also to determine the extent
and impact of that change on the entire software system.

Validation Coverage

Based on software’s complexity and safety risk - not on firm size or resource
constraints.

Depends complexity of the software design and the risk associated

INDEPENDENCE OF REVIEW

Self-validation is extremely difficult.

an independent evaluation is always better, especially for higher risk
applications.

Ex: third-party or internal staff members that are not involved in a particular
design or its implementation

FLEXIBILITY AND RESPONSIBILITY

FDA regulated medical device applications include software that:

- Is a component, part, or accessory of a medical device;
- Is itself a medical device; or

- Is used in manufacturing, design and development, or other parts of the
quality system.

FLEXIBILITY AND RESPONSIBILITY

application (e.g., in-house developed software, off-the-shelf software, contract
software, shareware)

different forms (e.g., application software, operating systems, compilers,
debuggers, configuration management tools)

commensurate with the safety risk associated with the system, device, or
process.

Activities and Tasks

Activities in a typical software life cycle model include the following:

+ Quality Planning

- System Requirements Definition

- Detailed Software Requirements Specification
- Software Design Specification

- Construction or Coding

- Testing - Installation

- Operation and Support

+ Maintenance

- Retirement

Quality Planning

- The specific tasks for each life cycle activity;
- Enumeration of important quality factors (e.g., reliability, maintainability, and
usability);
- Methods and procedures for each task;
- Task acceptance criteria;
- Criteria for defining and documenting outputs in terms that will allow
evaluation of their conformance to input requirements;
- Inputs for each task;
- Outputs from each task;
Roles, resources, and responsibilities for each task;
- Risks and assumptions; and
- Documentation of user needs.

Typical Tasks - Quality Planning -

Risk (Hazard) Management Plan

- Configuration Management Plan

- Software Quality Assurance Plan - Software Verification and Validation Plan
Verification and Validation Tasks, and Acceptance Criteria

Schedule and Resource Allocation (for software verification and validation
activities)

Reporting Requirements

- Formal Design Review Requirements

- Other Technical Review Requirements

* Problem Reporting and Resolution Procedures

- Other Support Activities

Typical software Requirements

* All software system inputs:

* All software system outputs;

* All functions that the software system will perform:

* All performance requirements that the software will meet, (e.g., data throughput, reliability, and
timing):

* The definition of all external and user interfaces, as well as any internal software-to-system
interfaces;

* How users will interact with the system;

* What constitutes an error and how errors should be handled:

* Required response times;

* The intended operating environment for the software, if this is a design constraint (e.g.,
hardware platform, operating system);

* All ranges. limits, defaults, and specific values that the software will accept: and

* All safety related requirements, specifications, features. or functions that will be implemented in
software.

Should be verified for

* There are no internal inconsistencies among requirements;

* All of the performance requirements for the system have been spelled out:

* Fault tolerance, safety, and security requirements are complete and correct:

* Allocation of software functions is accurate and complete:

* Software requirements are appropriate for the system hazards: and

* All requirements are expressed in terms that are measurable or objectively verifiable.

Typical Tasks — Requirements

® Preliminary Risk Analysis

® Traceability Analysis
— Software Requirements to System Requirements (and vice versa)
— Software Requirements to Risk Analysis

® Description of User Characteristics

® Listing of Characteristics and Limitations of Primary and Secondary Memory
® Software Requirements Evaluation

® Software User Interface Requirements Analysis

® System Test Plan Generation

® Acceptance Test Plan Generation

®* Ambiguity Review or Analysis

D e S i g n The software design specification should include:

* Software requirements specification, including predetermined criteria for acceptance of the
software;

* Software risk analysis;

¢ Development procedures and coding guidelines (or other programming procedures);

¢ Systems documentation (e.g., a narrative or a context diagram) that describes the systems
context in which the program is intended to function, including the relationship of hardware,
software, and the physical environment:

* Hardware to be used;

* Parameters to be measured or recorded:

* Logical structure (including control logic) and logical processing steps (e.g.. algorithms);

¢ Data structures and data flow diagrams;

* Definitions of variables (control and data) and description of where they are used:

¢ Error, alarm, and warning messages:

* Supporting software (e.g.. operating systems, drivers, other application software);

* Communication links (links among internal modules of the software, links with the supporting
software, links with the hardware, and links with the user):

* Security measures (both physical and logical security): and

* Any additional constraints not identified in the above elements.

Typical Tasks — Desien

® TUpdated Software Risk Analysis

® Traceability Analysis - Design Specification to Software Requirements (and vice versa)
® Software Design Evaluation

® Design Communication Link Analysis

® Module Test Plan Generation

® Integration Test Plan Generation

® Test Design Generation (module, integration, system, and acceptance)

Constru

ﬂ

or Codi

tion

d

A source code traceability analysis is an important tool to verify that all code is linked to established
specifications and established test procedures. A source code traceability analysis should be conducted
and documented to verify that:

* Each element of the software design specification has been implemented in code;

* Modules and functions implemented in code can be traced back to an element in the software
design specification and to the risk analysis;

* Tests for modules and functions can be traced back to an element in the software design
specification and to the risk analysis; and

* Tests for modules and functions can be traced to source code for the same modules and
functions.

Typical Tasks — Construction or Coding

® Traceability Analyses
— Source Code to Design Specification (and vice versa)
— Test Cases to Source Code and to Design Specification

® Source Code and Source Code Documentation Evaluation
® Source Code Interface Analysis

® Test Procedure and Test Case Generation (module, integration, system, and
acceptance)

Testing by the Software Developer

A software testing process should be based on principles that foster effective examinations of a software
product. Applicable software testing tenets include:

* The expected test outcome is predefined:

* A good test case has a high probability of exposing an error;

* A successful test is one that finds an error;

* There is independence from coding;

* Both application (user) and software (programming) expertise are employed:

* Testers use different tools from coders;

* Examining only the usual case is insufficient;

* Test documentation permits its reuse and an independent confirmation of the pass/fail status of a
test outcome during subsequent review.

Coverage Metrics

Statement Coverage — This criteria requires sufficient test cases for each program statement
to be executed at least once; however. its achievement is insufficient to provide confidence in a
software product's behavior.

Decision (Branch) Coverage — This criteria requires sufficient test cases for each program
decision or branch to be executed so that each possible outcome occurs at least once. It is
considered to be a minimum level of coverage for most software products, but decision
coverage alone is insufficient for high-integrity applications.

Condition Coverage — This criteria requires sufficient test cases for each condition in a
program decision to take on all possible outcomes at least once. It differs from branch
coverage only when multiple conditions must be evaluated to reach a decision.

Multi-Condition Coverage — This criteria requires sufficient test cases to exercise all possible
combinations of conditions in a program decision.

Loop Coverage — This criteria requires sufficient test cases for all program loops to be
executed for zero. one, two, and many iterations covering initialization, typical running and
termination (boundary) conditions.

Path Coverage — This criteria requires sufficient test cases for each feasible path, basis path,
etc.. from start to exit of a defined program segment. to be executed at least once. Because of
the very large number of possible paths through a software program. path coverage is generally
not achievable. The amount of path coverage is normally established based on the risk or
criticality of the software under test.

Data Flow Coverage — This criteria requires sufficient test cases for each feasible data flow to
be executed at least once. A number of data flow testing strategies are available.

The following types of functional software testing involve generally increasing levels of effort:

* Normal Case — Testing with usual inputs is necessary. However, testing a software product
only with expected, valid inputs does not thoroughly test that software product. By itself,
normal case testing cannot provide sufficient confidence in the dependability of the software
product.

* Output Forcing — Choosing test inputs to ensure that selected (or all) software outputs are
generated by testing.

* Robustness — Software testing should demonstrate that a software product behaves correctly
when given unexpected, invalid inputs. Methods for identifying a sufficient set of such test cases
include Equivalence Class Partitioning. Boundary Value Analysis, and Special Case
Identification (Error Guessing). While important and necessary. these techniques do not ensure
that all of the most appropriate challenges to a software product have been identified for testing.

* Combinations of Inputs — The functional testing methods identified above all emphasize
individual or single test inputs. Most software products operate with multiple inputs under their
conditions of use. Thorough software product testing should consider the combinations of
inputs a software unit or system may encounter during operation. Error guessing can be
extended to identify combinations of inputs, but it is an ad hoc technique. Cause-effect graphing
is one functional software testing technique that systematically identifies combinations of inputs
to a software product for inclusion in test cases.

In order to provide a thorough and rigorous examination of a software product, development testing is
typically organized into levels. As an example, a software product's testing can be organized into unit,
integration, and system levels of testing.

1)

2)

3)

Unit (module or component) level testing focuses on the early examination of sub-program
functionality and ensures that functionality not visible at the system level is examined by testing. Unit
testing ensures that quality software units are furnished for integration into the finished software
product.

Integration level testing focuses on the transfer of data and control across a program'’s internal and
external interfaces. External interfaces are those with other software (including operating system
software). system hardware, and the users and can be described as communications links.

System level testing demonstrates that all specified functionality exists and that the software product
is trustworthy. This testing verifies the as-built program's functionality and performance with respect
to the requirements for the software product as exhibited on the specified operating platform(s).
System level software testing addresses functional concerns and the following elements of a device's
software that are related to the intended use(s):

¢ Performance issues (e.g.. response times, reliability measurements):

¢ Responses to stress conditions, e.g., behavior under maximum load, continuous use;
¢ Operation of internal and external security features;

¢ Effectiveness of recovery procedures. including disaster recovery:

¢ Usability;

¢ Compatibility with other software products;

¢ Behavior in each of the defined hardware configurations: and

¢ Accuracy of documentation.

Typical Tasks — Testing by the Software Developer

® Test Planning

® Structural Test Case Identification

® Functional Test Case Identification

® Traceability Analysis - Testing
— Unit (Module) Tests to Detailed Design
— Integration Tests to High Level Design
— System Tests to Software Requirements

® Unit (Module) Test Execution
® Integration Test Execution

® Functional Test Execution

® System Test Execution

® Acceptance Test Execution

® Test Results Evaluation

® Emor Evaluation/Resolution

® Final Test Report

User Site Testing

Terms such as beta test, site validation, user acceptance test, installation

verification, and installation testing have all been used to describe user site
testing.

Typical Tasks - User Site Testing
- Acceptance Test Execution

- Test Results Evaluation

- Error Evaluation/Resolution

- Final Test Report

Mainte
Softwa

ance and

e Changes

In addition to software verification and validation tasks that are part of the standard software
development process, the following additional maintenance tasks should be addressed:

Software Validation Plan Revision - For software that was previously validated. the existing
software validation plan should be revised to support the validation of the revised software. If
no previous software validation plan exists, such a plan should be established to support the
validation of the revised software.

Anomaly Evaluation — Software organizations frequently maintain documentation, such as
software problem reports that describe software anomalies discovered and the specific
corrective action taken to fix each anomaly. Too often, however, mistakes are repeated
because software developers do not take the next step to determine the root causes of
problems and make the process and procedural changes needed to avoid recurrence of the
problem. Software anomalies should be evaluated in terms of their severity and their effects on
system operation and safety. but they should also be treated as symptoms of process
deficiencies in the quality system. A root cause analysis of anomalies can identify specific quality
system deficiencies. Where trends are identified (e.g., recurrence of similar software
anomalies), appropriate corrective and preventive actions must be implemented and
documented to avoid further recurrence of similar quality problems. (See 21 CFR 820.100.)

Problem Identification and Resolution Tracking - All problems discovered during
maintenance of the software should be documented. The resolution of each problem should be
tracked to ensure it is fixed, for historical reference, and for trending.

Proposed Change Assessment - All proposed modifications. enhancements. or additions
should be assessed to determine the effect each change would have on the system. This
information should determine the extent to which verification and/or validation tasks need to be
iterated.

Task Iteration - For approved software changes, all necessary verification and validation
tasks should be performed to ensure that planned changes are implemented correctly. all
documentation is complete and up to date, and no unacceptable changes have occurred in
software performance.

Documentation Updating — Documentation should be carefully reviewed to determine which
documents have been impacted by a change. All approved documents (e.g., specifications, test
procedures, user manuals, efc.) that have been affected should be updated in accordance with

configuration management procedures. Specifications should be updated before any
maintenance and cafhurare chanocec are made

HOW MUCH VALIDATION EVIDENCE IS NEEDED?

a plant-wide electronic record and electronic signature system;
- an automated controller for a sterilization cycle; or

- automated test equipment used for inspection and acceptance of finished
circuit boards in a lifesustaining / life-supporting device.

DEFINED USER REQUIREMENTS

the “intended use” of the software or automated equipment; and

- the extent to which the device manufacturer is dependent upon that
software or equipment for production of a quality medical device.

- document requirements for system performance, quality, error handling,
startup, shutdown,security, etc.;

- identify any safety related functions or features, such as sensors, alarms,
interlocks, logical processing steps, or command sequences; and

- define objective criteria for determining acceptable performance.

The device manufacturer should have documentation including:

* defined user requirements;
* validation protocol used:

* acceptance criteria;

* test cases and results; and
¢ avalidation summary

that objectively confirms that the software is validated for its intended use.

Please note the following points

| have enclosed the questions.
Students are expected to research to find answers to the questions
They have to use the handout as one of the references

Strictly no copy paste from Google. Use the references but explain in
their own words (No plagiarism)

They are expected to use examples in all the answers

The evaluation may involve one on one Q&A session

Questions

W o ~N O LU & W N

— = = = b e —
== TS, i O S A Y R)

Why testing is important?

HW vs SW vs Embedded testing - Highlight the differences

Verification vs Validation vs Testing - Highlight the differences

Write Short Notes: Defect Prevention in the context SW development and testing
White Box vs Black Box Testing - Highlight the differences

Refer to the Handout on Coverage Metrics. Explain the concepts with examples
In the ahove Coverage Metrics what are we achieving?

Explore Google to find out additional Coverage Metrics. Explain them in detail
Functional Testing: Explain the concept with examples

. Explore Google to find out additional Functional Testing strategies. Explain them in detail

. There are few techniques mentioned under robustness. Explain them with examples

. Explore additional technigues for robustness testing. Explain them with examples

. Write short Nates on System Level testing

. Write short Nates on Site Level Testing

. Explore Automated testing techniques. Explain them in detail

. Study about bug tracking tools and explain one of them in detail. Focus on the purpose of the tool.
17.

(Choose an application and do the functional testing using the technigues that you have learnt. Document them

18. Use any common app you find and design test cases for the app.

