
Medical Software
Testing

FDA
Abhishek Appaji

Topics

Introduction

Why Software
Validation

Principles

Activities and
Tasks

Automated
Process
Equipment &
Qulaity Software

Usage
● Software used as a component, part, or accessory of a medical device;
● Software that is itself a medical device (e.g., blood establishment

software);
● Software used in the production of a device (e.g., programmable logic

controllers in manufacturing equipment); and
● Software used in implementation of the device manufacturer's quality

system (e.g., software that records and maintains the device history
record).

Regulatory requirements for Software Validation
● 3140 medical device recalls conducted between 1992 and 1998
● 242 (7.7%) are software failures.
● 192 (79%) were caused by software defects after its initial production and

distribution.
● Device production process or quality system should be validated
● Component acceptance, manufacturing, labeling, packaging, distribution,

complaint handling, or to automate any other aspect of the quality
system.

● create, modify, and maintain electronic records and to manage electronic
signatures

● validated to ensure accuracy, reliability, consistent intended performance,
and the ability to discern invalid or altered records.

 "off-the-shelf'' software
Even this has to be validated

Why software validation
Establish - Define, document and implement

Requirement - Need or expectation for a system or software

e.g., design, functional, implementation, interface, performance, or physical requirements

Specification - Document that states requirement

include drawings, patterns, or other relevant documents

System requirements specification, software requirements specification, software design
specification, software test specification, software integration specification, etc

Verification & Validation
Verification

objective evidence that the design outputs of
a particular phase of the software
development life cycle meet all of the
specified requirements

consistency, completeness, and correctness
of the software and its supporting
documentation,

Ex: static and dynamic analyses, code and
document inspections, walkthroughs, etc

Validation

confirmation by examination and provision of
objective evidence that software specifications
conform to user needs and intended uses, and
that the particular requirements implemented
through software can be consistently fulfilled.

During and at the end of the software
development life cycle

 comprehensive software testing, inspections,
analyses, and other verification tasks performed
at each stage

Testing of device software functionality in a
simulated use environment, and user site
testing are typically included as components of
an overall design validation program for a
software automated device

Software Testing - level of confidence
 Measures such as defects found in specifications documents, estimates of
defects remaining, testing coverage, and other techniques are all used to
develop an acceptable level of confidence before shipping the product

will vary depending upon the safety risk (hazard) posed by the automated
functions of the device

Installation / Operational / Performance Qualification
IQ

OQ

PQ

Software development as part of system design
software validation must be considered within the context of the overall
design validation for the system

 demonstrate that completed software products comply with documented
software and system requirements

confirmation of conformance to all software specifications

Confirmation of software requirements are traceable to the system
specifications.

Software vs Hardware
Software doesn’t wear out unlike hardware

May improve over age

But continuous update may counter new problem

Software failure can occur without warning unlike hardware

Changes in software is easy and faster

Because of its complexity, the development process for software should be
even more tightly controlled than for hardware, in order to prevent problems
that cannot be easily detected later in the development process.

Software vs Hardware
Little changes can bring unexpected and significant problems elsewhere

Documentation is important to debug by someone else in future

Software changes are not standardized or interchangeable

In summary,

software engineering needs an even greater level of managerial scrutiny and
control than does hardware engineering.

Software is different from Hardware
Software

Errors easily traceable during design and dev

Quality depends on design and Dev

Reproduction is easy (copy/paste)

Meeting specification is tough

Branching is easy (parallel execution) but
complex

Testing alone cannot verify software to be
complete or correct

Hardware

Tough to debug

Quality depends on design, dev & manufacturing

Reproduction is tough

Meeting specs is comparatively easy

Benefits of software validation
 assure the quality of device software and software automated operations

increase the usability and reliability of the device,

resulting in decreased failure rates,

fewer recalls and corrective actions,

less risk to patients and users,

 reduced liability to device manufacturers

reduce long term costs

Design Review
Documented, comprehensive, and systematic examinations of a design

 to evaluate the adequacy of the design requirements,

to evaluate the capability of the design to meet these requirements, and

to identify problems

separately for the software, after the software is integrated with the hardware into the
system, or both.

include examination of development plans, requirements specifications, design
specifications, testing plans and procedures, all other documents and activities
associated with the project, verification results from each stage of the defined life cycle,
and validation results

Design Review ...
primary tool for managing and evaluating development projects

it is recommended that multiple design reviews be conducted

Formal design review is especially important at or near the end of the
requirements activity, before major resources have been committed to
specific design solutions

Design Review… should answer
Have the appropriate tasks and expected results, outputs, or products been
established for each software life cycle activity?

Do the tasks and expected results, outputs, or products of each software life
cycle activity:

Comply with the requirements of other software life cycle activities in
terms of correctness, completeness, consistency, and accuracy?

Satisfy the standards, practices, and conventions of that activity?

 Establish a proper basis for initiating tasks for the next software life cycle
activity?

Principles of Software Validation
Defect Prevention

Software testing is a necessary activity.

However, in most cases software testing by itself is not sufficient to establish
confidence that the software is fit for its intended use.

development environment, application, size of project, language, and risk.

begin early, i.e., during design and development planning and design input.

Software Life Cycle
the software life cycle contains specific verification and validation tasks that
are appropriate for the intended use of the software.

plan defines “what” is to be accomplished through the software validation
effort.

 Software validation plans specify areas such as scope, approach, resources,
schedules and the types and extent of activities, tasks, and work items.

Software Change
Whenever software is changed, a validation analysis should be conducted not
just for validation of the individual change, but also to determine the extent
and impact of that change on the entire software system.

Validation Coverage
 Based on software’s complexity and safety risk – not on firm size or resource
constraints.

 Depends complexity of the software design and the risk associated

 INDEPENDENCE OF REVIEW
Self-validation is extremely difficult.

 an independent evaluation is always better, especially for higher risk
applications.

Ex: third-party or internal staff members that are not involved in a particular
design or its implementation

FLEXIBILITY AND RESPONSIBILITY
FDA regulated medical device applications include software that:

· Is a component, part, or accessory of a medical device;

· Is itself a medical device; or

· Is used in manufacturing, design and development, or other parts of the
quality system.

FLEXIBILITY AND RESPONSIBILITY
application (e.g., in-house developed software, off-the-shelf software, contract
software, shareware)

 different forms (e.g., application software, operating systems, compilers,
debuggers, configuration management tools)

 commensurate with the safety risk associated with the system, device, or
process.

Activities and Tasks
Activities in a typical software life cycle model include the following:

· Quality Planning
· System Requirements Definition
· Detailed Software Requirements Specification
· Software Design Specification
· Construction or Coding
· Testing · Installation
· Operation and Support
· Maintenance
· Retirement

Quality Planning
· The specific tasks for each life cycle activity;
· Enumeration of important quality factors (e.g., reliability, maintainability, and
usability);
· Methods and procedures for each task;
· Task acceptance criteria;
 · Criteria for defining and documenting outputs in terms that will allow
evaluation of their conformance to input requirements;
· Inputs for each task;
· Outputs from each task;
 Roles, resources, and responsibilities for each task;
 · Risks and assumptions; and
· Documentation of user needs.

Typical Tasks – Quality Planning ·
Risk (Hazard) Management Plan
· Configuration Management Plan
· Software Quality Assurance Plan - Software Verification and Validation Plan
 Verification and Validation Tasks, and Acceptance Criteria
 Schedule and Resource Allocation (for software verification and validation
activities)
 Reporting Requirements
 - Formal Design Review Requirements
- Other Technical Review Requirements
· Problem Reporting and Resolution Procedures
· Other Support Activities

Typical software Requirements

Should be verified for

Design

Construction
or Coding

Testing by the Software Developer

Coverage Metrics

User Site Testing
Terms such as beta test, site validation, user acceptance test, installation
verification, and installation testing have all been used to describe user site
testing.

Typical Tasks – User Site Testing

· Acceptance Test Execution

· Test Results Evaluation

· Error Evaluation/Resolution

· Final Test Report

Maintenance and
Software Changes

HOW MUCH VALIDATION EVIDENCE IS NEEDED?
a plant-wide electronic record and electronic signature system;

· an automated controller for a sterilization cycle; or

· automated test equipment used for inspection and acceptance of finished
circuit boards in a lifesustaining / life-supporting device.

DEFINED USER REQUIREMENTS
the “intended use” of the software or automated equipment; and

· the extent to which the device manufacturer is dependent upon that
software or equipment for production of a quality medical device.

· document requirements for system performance, quality, error handling,
startup, shutdown,security, etc.;

· identify any safety related functions or features, such as sensors, alarms,
interlocks, logical processing steps, or command sequences; and

· define objective criteria for determining acceptable performance.

Please note the following points

I have enclosed the questions.

 · Students are expected to research to find answers to the questions

· They have to use the handout as one of the references

· Strictly no copy paste from Google. Use the references but explain in
their own words (No plagiarism)

· They are expected to use examples in all the answers

· The evaluation may involve one on one Q&A session

Questions
1. Why testing is important?
2. HW vs SW vs Embedded testing – Highlight the differences
3. Verification vs Validation vs Testing – Highlight the differences
4. Write Short Notes: Defect Prevention in the context SW development and testing
5. White Box vs Black Box Testing – Highlight the differences
6. Refer to the Handout on Coverage Metrics. Explain the concepts with examples
7. In the above Coverage Metrics what are we achieving?
8. Explore Google to find out additional Coverage Metrics. Explain them in detail
9. Functional Testing: Explain the concept with examples
10. Explore Google to find out additional Functional Testing strategies. Explain them in detail
11. There are few techniques mentioned under robustness. Explain them with examples
12. Explore additional techniques for robustness testing. Explain them with examples
13. Write short Notes on System Level testing
14. Write short Notes on Site Level Testing
15. Explore Automated testing techniques. Explain them in detail
16. Study about bug tracking tools and explain one of them in detail. Focus on the purpose of the tool.
17. Choose an application and do the functional testing using the techniques that you have learnt. Document them
18. Use any common app you find and design test cases for the app.

