

BMS COLLEGE OF ENGINEERING, BENGALURU - 560 019

Autonomous institute, Affiliated to VTU

DEPARTMENT OF MATHEMATICS

Unit 3: Vector spaces and Linear transformations

Course Code: 23MA2BSMCS/23MA2BSMES

I. Vector spaces $(V, +, \cdot)$ over a field K.

A nonempty set V is said to be a vector space over field K if

- (V, +) is an abelian group.
- $k \cdot u \in V$ for all $u \in V$ and $k \in F$
- $k \cdot (u + v) = k \cdot u + k \cdot v$
- $(k_1 + k_2) \cdot u = k_1 \cdot u + k_2 \cdot u$
- $\bullet \quad (k_1 k_2) \cdot u = k_1 \cdot (k_2 \cdot u)$
- $1 \cdot u = u$.

II. **Subspaces**

Non-empty subsets of a vector space which are vector space over the same field under the same vector addition and scalar multiplication are called subspaces.

A nonempty set W is a subspace of a vector space V over a field K if

- Zero vector is in W.
- $u + v \in W$ and $ku \in W$ for all $u, v \in W$ and $k \in K$ or $au + bv \in W$ for $u, v \in W$ and $a, b \in K$.

Intersection of any two subspaces of V is also a subspace of V.

Problems

- Which of the following subsets of \mathbb{R}^2 with the usual operations of vector addition and scalar multiplication are subspaces?
 - a) W_1 is the set of all vectors of the form (x, y), where $x \ge 0$.
 - b) W_2 is the set of all vectors of the form (x, y), where $x \ge 0$ and $y \ge 0$.
 - c) W_3 is the set of all vectors of the form (x, y), where x = 0.
 - d) W_4 is the set of all vectors of the form (x, y), where xy = 0.
 - e) W_5 is the set of vectors of the form (3s, 2 + 5s) for $s \in \mathbb{R}$
- Determine whether or not W is a subspace of \mathbb{R}^3 where W consists of all vectors of the form (a, b, c)in R^3 such that:

a.
$$a = 3b$$
.

d.
$$a + b + c = 0$$
.

g.
$$a + b + c = 3$$

b.
$$a \le b \le c$$
.
c. $ab = 0$.

$$f = a - 2b - 2a$$

d.
$$a+b+c=0$$
.
e. $b=a^2$.
f. $a=2b=3c$.
g. $a+b+c=3$
h. $a \ge 0$.
i. $a^2+b^2+c^2 \le 1$.

- 3. Determine whether or not $W = \{(\alpha, 4\alpha, 5\alpha) : \alpha \text{ is any scalar}\}\$ is a subspace of \mathbb{R}^3 .
- Determine whether or not the subset of matrices of the form $\begin{bmatrix} a & a^2 \\ b & b^2 \end{bmatrix}$ is a subspace.

III. Linear combination

A vector v is said to be the linear transformation of elements of set S if $v=c_1s_1+c_2s_2+c_3s_3+....+c_ns_n$ for all s_i in S and c_i in F.

IV. **Spanning sets or Linear span**

Consider a subset $S = \{u_1, u_2, \dots u_m\}$ of a vector space V over a field F. The collection of all possible linear combinations of vectors in S is called the linear span of S denoted by $span(S) = span(u_i)$. span(S) is a subspace of V.

Course code: 23MA2BSMCS/MES

PROBLEMS

1. Verify whether v in \mathbb{R}^3 is a linear combination of the vectors u_1 , u_2 and u_3 : Or show that the given v is in Span(S), where $S = \{u_1, u_2, \dots u_m\}$

a.
$$v = (1, -2,5), u_1 = (1,1,1), u_2 = (1,2,3)$$
 and $u_3 = (2, -1,1).$

b.
$$v = (2, -5, 3), u_1 = (1, -3, 2), u_2 = (2, -4, -1)$$
and $u_3 = (1, -5, 7).$

c.
$$v = (4, -9, 2), u_1 = (1, 2, -1), u_2(1, 4, 2), and u_3 = (1, -3, 2).$$

d.
$$v = (1,3,2), u_1 = (1,2,1), u_2(2,6,5)$$
 and $u_3 = (1,7,8)$.

e.
$$v = (1,4,6), u_1 = (1,1,2), u_2(2,3,5)$$
 and $u_3 = (3,5,8).$

- Find k such that v = (1, -2, k) is a linear combination of (3, 0, -2) and (2, -1, -5).
- Express the polynomial $v = t^2 + 4t 3$ in P(t) as a linear combination of the polynomials $p_1 = t^2 - 2t + 5$, $p_2 = 2t^2 - 3t$ and $p_3 = t + 1$.
- Express $M = \begin{bmatrix} 4 & 7 \\ 7 & 9 \end{bmatrix}$ as a linear combination of $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ & $C = \begin{bmatrix} 1 & 1 \\ 4 & 5 \end{bmatrix}$.
- 5. Check whether the following polynomials are in the $span(p_1, p_2, p_3)$ where $p_1 = t^3 + t^2$, $p_2 = t^3 + t$ and $p_3 = t^2 + t$. i) $p(t) = t^3 + t^2 + t$ ii) $p(t) = 2t^3 - t$ iii) $p(t) = 2t^2 + 1$.

V. Linear dependence and independence:

Consider $S = \{u_1, u_2, \dots u_m\}$ of a vector space V. The set S is said to be linearly dependent if there exists some non-zero scalars $c_1, c_2 \cdots c_m$ such that $c_1 u_1 + c_2 u_2 + \cdots + c_m u_m = 0$.

If such non-zero scalars do not exist, then S is said to be linearly independent.

- Any set of vectors containing the zero vector is a linearly dependent set.
- Any set with more than 1 vector is linearly dependent if and only if, one of them is a linear combination of the other vectors.

PROBLEMS

Determine whether or not each of the following lists of vectors in \mathbb{R}^3 are linearly dependent:

a)
$$u_1 = (1,2,3), u_2 = (0,0,0), u_3 = (1,5,6).$$

b)
$$u = (1,1,2), v = (2,3,1)$$
 and $w = (4,5,5)$.

c)
$$u_1 = (1,2,5), u_2 = (1,3,1), u_3 = (2,5,7) \text{ and } u_4 = (3,1,4).$$

d)
$$u_1 = (1,2,5), u_2 = (2,5,1)$$
and $u_3 = (1,5,2).$

Determine whether the following vectors in \mathbb{R}^4 are linearly dependent or independent:

a.
$$(1,2,-3,1), (3,7,1,-2), (1,3,7,-4)$$
.

b.
$$(1,3,1,-2), (2,5,-1,3), (1,3,7,-2).$$

3. Determine whether the following polynomials u, v and w in P(t) are linearly dependent or independent:

a.
$$u = t^3 - 4t^2 + 3t + 3$$
, $v = t^3 + 2t^2 + 4t - 1$ and $w = 2t^3 - t^2 - 3t + 5$.

b.
$$u = t^3 - 5t^2 - 2t + 3$$
, $v = t^3 - 4t^2 - 3t + 4$ and $w = 2t^3 - 17t^2 - 7t + 9$.

VI. **Bases and dimension**

A nonempty subset $B = \{u_1, u_2, \dots u_n\}$ of a vector space V over a field K is said to be a basis of V if

- B is a linearly independent set.
- span(B) = V.

The number of vectors in the basis is called the dimension of V denoted by dim(V) = n.

- Any basis of a vector space will have the same number of vectors.
- In an n -dimensional vector space, any set containing more than n vectors are linearly dependent.
- Any linearly independent set with less than n vectors cannot span the vector space V. But this set is a subset of some basis of V and hence can be extended to a basis of V.

PROBLEMS

- Determine whether or not each of the following form a basis of \mathbb{R}^3 :
 - (1,1,1), (1,0,1).
 - (1,1,1), (1,2,3) and (2,-1,1).
- 2. Determine whether (1,1,1,1), (1,2,3,2), (2,5,6,4) and (2,6,8,5) form a basis of \mathbb{R}^4 . If not find the dimension of the subspace they span.
- 3. Extend $\{u_1 = (1,1,1,1), u_2 = (2,2,3,4)\}$ to a basis of \mathbb{R}^4 .
- 4. Find a subset of $S = \{u_1, u_2, u_3, u_4\}$ that gives a basis for $W = span(u_i)$ of \mathbb{R}^5 where:

a.
$$u_1 = (1,1,1,2,3), u_2 = (1,2,-1,-2,1), u_3 = (3,5,-1,-2,5)$$
 and $u_4 = (1,2,1,-1,4).$

b.
$$u_1 = (1, -2, 1, 3, -1), u_2 = (-2, 4, -2, -6, 2), u_3 = (1, -3, 1, 2, 1)$$
 and

$$u_4 = (3, -7, 3, 8, -1).$$

5. Find the basis and dimension of the subspace W spanned by:

a.
$$u = t^3 + 2t^2 - 2t + 1$$
, $v = t^3 + 3t^2 - 3t + 4$ and $w = 2t^3 + t^2 - 7t - 7$ in $P_3(t)$

b.
$$u = t^3 + t^2 - 3t + 2$$
, $v = 2t^3 + t^2 + t - 4$ and $w = 4t^3 + 3t^2 - 5t + 2$ in $P_2(t)$.

a.
$$u = t^3 + 2t^2 - 2t + 1$$
, $v = t^3 + 3t^2 - 3t + 4$ and $w = 2t^3 + t^2 - 7t - 7$ in $P_3(t)$.
b. $u = t^3 + t^2 - 3t + 2$, $v = 2t^3 + t^2 + t - 4$ and $w = 4t^3 + 3t^2 - 5t + 2$ in $P_3(t)$.
c. $A = \begin{bmatrix} 1 & -5 \\ -4 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ -1 & 5 \end{bmatrix}$, $C = \begin{bmatrix} 2 & -4 \\ -5 & 7 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & -7 \\ -5 & 1 \end{bmatrix}$ in $V = M_{2,2}$.

6. Find the basis and dimension of the row space, column space and null space of the following matrices:

Hint: $\operatorname{rowsp}(A) = \operatorname{span}(R_i)$; $\operatorname{colsp}(A) = \operatorname{span}(C_i)$; $\operatorname{nullsp}(A) = \operatorname{solution space of } AX = 0$.

i.
$$\begin{bmatrix} 1 & 2 & -1 & -2 & 0 \\ 2 & 4 & -1 & 1 & 0 \\ 3 & 6 & -1 & 4 & 0 \\ 0 & 0 & 1 & 5 & 0 \end{bmatrix}$$
iii.
$$\begin{bmatrix} 1 & -1 & 1 & 3 & 2 \\ 2 & -1 & 1 & 5 & 1 \\ 0 & 1 & -1 & -1 & -3 \end{bmatrix}$$
iv.
$$\begin{bmatrix} 0 & 0 & 3 & 1 & 4 \\ 1 & 3 & 1 & 2 & 1 \\ 3 & 9 & 4 & 5 & 2 \\ 4 & 12 & 8 & 8 & 7 \end{bmatrix}$$
iv.
$$\begin{bmatrix} 0 & 0 & 3 & 1 & 4 \\ 1 & 3 & 1 & 2 & 1 \\ 3 & 9 & 4 & 5 & 2 \\ 4 & 12 & 8 & 8 & 7 \end{bmatrix}$$

iv.
$$\begin{bmatrix} 2 & -1 & 1 & 5 & 1 \\ 0 & 1 & -1 & -1 & -1 \\ 0 & 0 & 3 & 1 & 4 \\ 1 & 3 & 1 & 2 & 1 \\ 3 & 9 & 4 & 5 & 2 \\ 4 & 12 & 8 & 8 & 7 \end{bmatrix}$$

VII. **Linear transformation:**

If U and V are vector spaces over the same field, then the mapping $L: U \to V$ is said to be a linear transformation if

a)
$$L(u+v) = L(u) + L(v) \forall u, v \in U$$
.

b)
$$L(k.u) = k.L(u) \forall k \in F, u \in U$$
.

Alternately, $L(k_1.u + k_2v) = k_1.L(u) + k_2.L(v)$.

PROBLEMS

Check whether the following are linear transformations:

1.
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
; $T(a, b) = (2a, 3b)$

2.
$$T: M_{2\times 2} \to M_{2\times 2}; T\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+c & 0 \\ 0 & c-d \end{bmatrix}$$

3. $T: M_{2\times 2} \to M_{2\times 2}; T\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c & a \\ d & b \end{bmatrix}$

3.
$$T: M_{2\times 2} \to M_{2\times 2}; T\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c & a \\ d & b \end{bmatrix}$$

- 4. $T: P_2(t) \to P_3(t); T(f(t)) = t * f(t)$
- 5. $T: P_2(t) \to P_4(t); T(f(t)) = f(t^2)$
- 6. $T: V_1(R) \to V_3(R); T(x) = (x, x^2, x^3).$
- 7. Let *V* be the vector space of differentiable functions $f: \mathbb{R} \to \mathbb{R}$ with basis *S* and let

 $D: V \to V$ be the differential operator defined by $D(f(t)) = \frac{d(f(t))}{dt}$. Is D a linear transformation.

Theorem: If $T: U \to V$ is linear transformation and $B = \{u_1, u_2, u_3 \dots u_n\}$ is a basis of U and $S = \{v_1, v_2, v_3 \dots v_n\}$ any set of vectors in V, then there exists a unique linear transformation such that $T(u_1) = v_1, T(u_2) = v_2 \dots T(u_n) = v_n$.

Meaning: Every element v in U can be written as $v = \sum_{i=1}^{n} c_i u_i$. So by definition, $T(v) = T[\sum_{i=1}^{n} c_i u_i] = \sum_{i=1}^{n} c_i T(u_i)$ i.e., image of every element is a linear combination of images of the basis vectors. Alternately, image of the basis spans Range(T).

PROBLEMS

Find the linear transformation

- 8. $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that T(1,2) = (3,0) and T(2,1) = (1,2).
- 9. $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that T(1,2) = (3,-1) and T(0,1) = (2,1).
- 10. $T: \mathbb{R}^2 \to \mathbb{R}^2$ that maps (1,3) and (1,4) into (-2,5) and (3, -1).
- 11. $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that T(-1,0) = (-1,0,2) and T(2,1) = (1,2,1).
- 12. $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that T(1,1,1) = (1,1,1) and T(1,2,3) = (-1,-2,-3). (Ans: Infinitely many possibilities. It depends on how we map the missing basis vector).
- 13. Find the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ whose range space is spanned by (1,2,0,-4) and (2,0,-1,-3). (Hint: The 3rd basis vector should be mapped to zero vector as the given vectors are the basis of range space).

VIII. Matrix representation of linear transformation:

Let $T: U \to V$ be a linear transformation with $B = \{u_1, u_2, u_3 \dots u_n\}$ and $B' = \{v_1, v_2, v_3 \dots v_m\}$ as the basis of U and V respectively. The matrix of the linear transformation denoted by $[T]_{BB'}$ is given by coordinate vectors of $T(u_i)$ relative to B' written along the columns. i.e., $[T]_{BB'} = [[T(u_1)]_{B'}[T(u_2)]_{B'} \cdots [T(u_n)]_{B'}]$ which is a $m \times n$ matrix.

PROBLEMS

- 1. Find the matrix of linear transformation $T: R^2 \to R^3$ defined by $T \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a+b \\ a-b \\ 2b \end{bmatrix}$ with respect to the basis $B = \{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}\}$ for R^2 and $C = \{\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}\}$ for R^3 .
- 2. Find the matrix of linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (2x, 4y + 5z) with respect to the basis $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ for \mathbb{R}^3 and $C = \{(1,1), (0,1)\}$ for \mathbb{R}^2 .
- 3. Find the matrix of linear transformation $T: V_2(R) \to V_2(R)$ defined by
- 4. T(x,y) = (2x + 3y, 4x 5y) with respect to basis $S = \{(1,2), (2,5)\}$.
- 5. Consider the matrix $A = \begin{bmatrix} 2 & 4 \\ 5 & 6 \end{bmatrix}$ which defines a linear operator on \mathbb{R}^2 . Find the matrix of the linear transformation relative to the basis $S = \{u_1, u_2\} = \{\begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 3 \\ -7 \end{bmatrix}\}$.

6. Consider the matrix $A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -1 & 0 \\ 1 & 4 & -2 \end{bmatrix}$ which defines a linear operator on \mathbb{R}^2 . Find the

matrix of the linear transformation relative to the basis $S = \{u_1, u_2, u_3\} = \{\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \}$

- 7. Consider the matrix $A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 7 & 4 \\ 1 & 4 & 3 \end{bmatrix}$ which defines a linear operator on \mathbb{R}^2 . Find the matrix of the linear transformation relative to the basis $S = \{u_1, u_2, u_3\} = \{\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}\}.$
- 8. Find the matrix of linear transformation $T: p_2(t) \to p_2(t)$ defined by $T(f(t)) = f(t^2)$ with respect to the basis $B = \{1, t, t^2\}$.
- 9. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation such that T(1,0,0) = (2,1),
- 10. T(0,1,0) = (1,-1) and T(1,1,0) = (0,3). Find the matrix representation of T with respect to the standard bases of R^3 and R^2 .

Rank-Nullity Theorem: IX.

Rank(T) = dim(Range(T)) and Nullity(T) = dim(Ker(T)).

Theorem: If $T: U \to V$ is a linear transformation then Rank(T) + Nullity(T) = dim(U).

PROBLEMS

Find the basis for the range space R(T), null space N(T) for the following linear transformation and also verify rank-nullity theorem. Verify whether they one-one or onto.

- 1. $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + y, x y, 2x + z).
- **2.** $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + 2y z, y + z, x + y 2z).
- 3. $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + y, x y, 2x + z).
- **4.** $T: \mathbb{R}^4 \to \mathbb{R}^3$ defined by T(x, y, z, t) = (x y + z + t, x + 2z + t, x + y + 3z 3t).

- 6y + 8z + 5s t