

Unit 1: Calculus of One Variable

For the Course Code: 23MA1BSMCS, 23MA1BSCEM

Course: Mathematical Foundation for Computer Science Stream – 1 Mathematical Foundation for Civil, Electrical and Mechanical Eng. Stream - 1

#### **Polar Curves:**

### **Angle between radius vector and tangent:**

If  $r = f(\theta)$ , then the angle between radius vector and tangent is given by  $\tan \phi = r \frac{d\theta}{dr}$ 

- 1. If  $^{\phi}$  be the angle between radius vector and the tangent at any point of the curve  $r = f(\theta)$ then prove that  $tan(\phi) = r \frac{d\theta}{dr}$
- 2. Find the angle between the radius vector and the tangent for the following polar curves.

a) 
$$r = a(1 + \cos \theta)$$

Ans: 
$$\frac{\pi}{2} + \frac{\theta}{2}$$
.

b) 
$$r^2 = a^2 \sin^2 \theta$$

Ans: 
$$\phi = \theta$$
Ans:  $\phi = \tan^{-1} \left[ \frac{1 + e \cos \theta}{e \sin \theta} \right]$ .

b) 
$$r^2 = a^2 \sin^2 \theta$$
  
 $\frac{l}{r} = 1 + e \cos \theta$   
c)  $r^m \cos m\theta = a^m$ 

Ans: 
$$\frac{\pi}{2} - m\theta$$

- 3. Find the angle between the radius vector and the tangent for the following polar curves. And also find slope of the tangent at the given point.

e) 
$$\frac{2a}{r} = 1 - \cos\theta$$
 at  $\theta = 2\pi$ 

**Ans**: 
$$\phi = \frac{2\pi}{3}$$
,  $\tan \psi = \sqrt{3}$ ,.

also find slope of the tangent at the given by 
$$\frac{2a}{r} = 1 - \cos\theta$$
 at  $\theta = 2\pi/3$ 

f)  $r\cos^2(\theta/2) = a^2$   $\theta = 2\pi/3$ 

at  $r^2\cos(2\theta) = a$ 

**Ans**: 
$$\phi = \frac{\pi}{6}$$
.

$$r^2\cos(2\theta) = a$$

Ans: 
$$\phi = \frac{\pi}{2} - 2\theta$$
;  $\psi = \frac{\pi}{2} - \theta$ 

#### **Angle between curves:**

Angle of intersection of two polar curves = angle of intersection of their tangents denoted by  $\alpha$ 

$$\alpha = |\phi_2 - \phi_1| \\ \text{or} \\ \tan \alpha = \left| \frac{\tan \phi_1 - \tan \phi_2}{1 + \tan \phi_1 \tan \phi_2} \right|$$

**4.** Find the angle of intersection of the following pair of curves:

Unit 1: Calculus of One Variable

a) 
$$r = \sin \theta + \cos \theta$$
,  $r = 2 \sin \theta$ 

b) 
$$r^2 \sin 2\theta = 4$$
 and  $r^2 = 16 \sin 2\theta$ 

c) 
$$r = a$$
 and  $r = 2a\cos\theta$ .

$$r = \frac{a}{\log \theta} \qquad r = a \log \theta$$
(1) and

d) 
$$\log \theta$$
 and

e) 
$$r = \frac{a\theta}{1+\theta}$$
 and  $r = \frac{a}{1+\theta^2}$ 

f) 
$$r = a$$
 and  $r = 2a\cos\theta$ .

$$r = 3\cos(\theta)$$
 and  $r = 1 + \cos(\theta)$ 

Ans:  $\pi/4$ 

Ans: 
$$\pi/3$$
.

Ans: 
$$\pi/3$$
.

Ans: 
$$\tan^{-1}\left(\frac{2e}{1-e^2}\right).$$

$$\tan^{-1} 3$$

Ans:

Ans: 
$$\pi/3$$
.

ns: 
$$\frac{\pi}{6}$$
.

5. Show that the following pair of curves intersect each other orthogonally.

a) 
$$r = a(1 + \cos \theta)$$
 and  $r = b(1 - \cos \theta)$ .

b) 
$$r = a \cos \theta$$
 and  $r = a \sin \theta$ .

c) 
$$r = 4 \sec^2(\theta/2)$$
 and  $r = 9 \csc^2(\theta/2)$ 

d) 
$$r^n = a^n \cos(n\theta)$$
 and  $r^n = b^n \sin(n\theta)$ .

e) 
$$r^2 \sin 2\theta = a^2$$
 and  $r^2 \cos 2\theta = b^2$ .

f) 
$$r = ae^{\theta}$$
 and  $re^{\theta} = b$ .

g) 
$$\frac{2a}{r} = 1 + \cos\theta$$
 and  $\frac{2b}{r} = 1 - \cos\theta$ 

h) 
$$r = a\cos\theta$$
 and  $r = a\sin\theta$ .

$$r = a\theta$$
 and  $r = \frac{a}{\theta}$ 

# Length of the perpendicular from pole to the tangent for the polar curve:

$$p = r \sin \phi$$
or
$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$$

P is the length of perpendicular from pole to the tangent  $\phi$  is the angle between radius vector and tangent

Unit 1: Calculus of One Variable

1. If p denotes the length of the perpendicular from pole to the tangent of the curve  $r = f(\theta)$ ,

 $p = r \sin \phi$ 

then prove that

and hence deduce that  $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$ 

2. Find the length of the perpendicular from the pole to the tangent for the following curves

a)  $r = a(1-\cos\theta)$  at  $\theta = \pi/2$ 

Ans:  $a/\sqrt{2}$ 

b)  $r = a(1 + \cos\theta)$  at  $\theta = \pi/2$ 

Ans:  $a/\sqrt{2}$ 

c)  $r^2 = a^2 \cos 2\theta$  at  $\theta = \pi$ .

Ans: a

d)  $r^2 = a^2 \sec 2\theta$  at  $\theta = \pi/6$ 

Ans:  $a/\sqrt{2}$ 

e)  $\frac{2a}{r} = (1 - \cos \theta)$  at  $\theta = \pi/2$ 

Ans:  $\sqrt{2}(a)$ 

f)  $r = a \sec^2(\theta/2)$  at  $\theta = \pi/3$ 

**Ans:**  $2a/\sqrt{3}$ 

**Pedal Equation:** 

p

 $p = r \sin \phi$ 

or  $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left( \frac{dr}{d\theta} \right)^2$ 

- Relation between and , obtained using
  - 1. Find the pedal equation of the following curves:

a)  $r = ae^{\theta \cot \alpha}$ .

**Ans:**  $p = r \sin \alpha$ 

b)  $r(1-\cos\theta)=2a$ 

Ans:  $p^2 = ar$ 

c)  $r^m \cos(m\theta) = a^m$ 

 $\mathbf{Ans:} \ pr^{m-1} = a^m$ 

 $\frac{l}{r} = 1 + e\cos\theta$ 

Ans:  $\frac{1}{p^2} = \frac{e^2 - 1}{l^2} + \frac{2}{lr}$ 

d)

**Ans**:  $p^2 = r^2 - a^2$ e)

#### **Curvature and Radius of Curvature**

 $Curvature = \kappa = \frac{d\psi}{ds} .$ 

Radius of curvature =  $\rho = \frac{1}{\kappa}$ ;  $\kappa \neq 0$ 

# **Cartesian Form:**

Unit 1: Calculus of One Variable

Radius of curvature (Cartesian form),  $\rho = \frac{\left(1 + y_1^2\right)^{3/2}}{y_2}$ , where  $y_1 = \frac{dy}{dx}$  and  $y_2 = \frac{d^2y}{dx^2}$ 

$$y_1 \to \infty$$

$$\rho = \frac{\left[ \left( \frac{dx}{dy} \right)^2 + 1 \right]^{\frac{3}{2}}}{\frac{d^2x}{dy^2}}$$

If then

Find the radius of curvature for the following curves:

1.

a. The Folium 
$$x^3 + y^3 = 3axy$$
 at the point  $(3a/2, 3a/2)$ 

b. Catenary 
$$y = c \cosh\left(\frac{x}{c}\right)$$
 at  $(0,c)$ .

c. 
$$y^2 = \frac{a^2(a-x)}{x}$$
 at . Ans:

$$y = 4\sin x - \sin(2x) \qquad x = \frac{\pi}{2}$$
e. Ans:  $\frac{5\sqrt{5}}{4}$ 

2. Find the radius of curvature for 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 at  $(a,0)$  and  $(0,b)$ . Ans:

3. If P be the radius of curvature at any point on the parabola and S be its focus then show that varies as

4. If is the radius of curvature for 
$$y = \frac{ax}{a+x}$$
 then prove that  $\left(\frac{x}{y}\right)^2 + \left(\frac{y}{x}\right)^2 = \left(\frac{2\rho}{a}\right)^{\frac{2}{3}}$ .

# Parametric form:

Radius of curvature in parametric form:

$$\rho = \frac{\left(x_1^2 + y_1^2\right)^{3/2}}{x_1 y_2 - x_2 y_1}; \text{ where } x_1 = \frac{dx}{dt}; y_1 = \frac{dy}{dt}, x_2 = \frac{d^2 x}{dt^2}, y_2 = \frac{d^2 y}{dt^2}$$

Find the radius of curvature for the following curves:

1. 
$$x = 6t^2 - 3t^4$$
;  $y = 8t^3$ 

Unit 1: Calculus of One Variable

1. 
$$x = e^t + e^{-t}$$
;  $y = e^t - e^{-t}$  at  $t = 0$ 

2. 
$$x = \frac{a\cos(t)}{t}; \ y = \frac{a\sin(t)}{t}$$

3. 
$$x = a \ln(\sec t + \tan t)$$
;  $y = a \sec t$ 

4. 
$$x=1-t^2$$
;  $y=t-t^3$ ;  $at t = \pm 1$ 

5 
$$x = 2t^2 - t^4$$
;  $y = 4t^3$  at  $t = 1$ 

$$x = a\left(t - \frac{t^3}{3}\right); \ y = at^2$$
6.

7. 
$$x = \ln(t); \ y = \frac{1}{2}(t + t^{-1})$$

8. 
$$x = a(t+\sin t); y = a(1-\cos t) \text{ at } t = \pi$$
9. 
$$x = a\cos t; y = a\sin t$$

9. 
$$x = a \cos t$$
;  $y = a \sin t$ 

$$10. x = a \ln \left( \tan \left( \frac{\pi}{4} + \frac{\theta}{2} \right) \right); y = a \sec(\theta)$$

$$11 x = a \cos^3 t; y = a \sin^3 t$$

#### Polar form:

Radius of curvature in polar coordinates:  $\rho = \frac{\left(r^2 + r_1^2\right)^{3/2}}{r^2 + 2r_1^2 - rr_2}; \text{ where } r_1 = \frac{dr}{d\theta} \text{ and } r_2 = \frac{d^2r}{d\theta^2}$ 

Alternative:

Radius of curvature in **Pedal form**:  $\rho = r \frac{dr}{dp}$ 

1. If  $\rho_1$  and  $\rho_2$  are the radii of curvature at the extremities of a chord through the pole for the

$$r = a(1 + \cos \theta)$$
 polar curve, prove that 
$$\rho_1^2 + \rho_2^2 = \frac{16a^2}{9}$$

2. Show that for the curve  $r(1-\cos\theta) = 2a$ ,  $\rho^2$  varies as  $r^3$ .  $r = a(1+\cos\theta) \qquad \qquad \frac{\rho^2}{r}$ 3. For the cardioid , show that r is constant.

$$r = a(1 + \cos\theta) \qquad \qquad \rho^2$$

- 4. Find the radius of curvature at the point  $(r,\theta)$  for the curve  $r^n = a^n \sin n\theta$ .



Unit 1: Calculus of One Variable

5. Find the radius of curvature for the curve  $\frac{l}{r} = 1 + e \cos \theta$  at any point  $(r, \theta)$ .

- 6. Write the equation of the polar curve  $r^n = a^n \sin n\theta$  and find the radius of curvature to the curve.
- 7. Find the radius of curvature at the point  $(r,\theta)$  for the curve  $r = ae^{\theta \cot \alpha}$ .
- 8. Find the radius of curvature for the curve  $r^2 = a^2 \cos 2\theta$  at the point  $(r, \theta)$ .
- 9. Find the radius of curvature at the point  $(r,\theta)$  for the curve  $r^m = a^m \cos m\theta$ .