

B.M.S. COLLEGE OF ENGINEERING, BENGALURU – 560 0 19

Autonomous college, affiliated to VTU

DEPARTMENT OF MATHEMATICS

Course: Mathematical Foundation for Mechanical and Civil Engineering Stream 2(23MA2BSMCM) Mathematical Foundation for Electrical Stream-2(23MA2BSMES)

UNIT-2: VECTOR CALCULUS

Scalar point function:

A Function $f: \mathbb{R}^3 \to \mathbb{R}$, whose values are scalars that depends on a point P = P(x, y, z) i.e. f = f(x, y, z).

Gradient of the scalar point function

If f(x, y, z) is a scalar point function then the gradient of f is given by

grad
$$f = \nabla f = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}j + \frac{\partial f}{\partial z}k$$
.

Geometrically, grad(f) is a normal to the surface f(x, y, z) = c and has a magnitude equal to the rate of change of f(x, y, z) = c along this normal.

1. Find
$$grad \phi$$
, if $\phi = \log(x^2 + y^2 + z^2)$.

Ans:
$$\frac{2(x \hat{i} + y j + z k)}{x^2 + y^2 + z^2}$$

2. If
$$f(x, y, z) = 3x^2y - y^3z^2$$
, find ∇f and $|\nabla f|$ at $(1, -2, -1)$.

Ans:
$$\nabla f = -12\hat{\imath} - 9\hat{\jmath} - 16\hat{k}; |\nabla f| = \sqrt{481}$$

3. If
$$f = x^2yz$$
 and $g = xy - 3z^2$, calculate $\nabla(\nabla f \cdot \nabla g)$.

Ans:
$$(2y^2z + 3x^2z - 12xyz)\hat{\imath} + (4xyz - 6x^2z)\hat{\jmath} + (2xy^2 + x^3 - 6x^2y)\hat{k}$$

4. The force in an electrostatic field given by $f = 4x^2 + 9y^2 + z^2$ has the direction of the gradient ∇f . Find this gradient at P(5,-1,-11).

Unit vector normal to the given surface:

Unit vector normal to the given surface f(x, y, z) is given by $\hat{n} = \frac{\nabla f}{|\nabla f|}$

Find the unit vector normal to:

(i) the surface
$$x^3 + y^3 + 3xyz = 3$$
 at the point $(1, 2, -1)$. Ans: $\frac{-\hat{i} + 3j + 2k}{\sqrt{14}}$

(ii) the cone of revolution $z^2 = 4(x^2 + y^2)$ at the point at the point (1,0,2).

(iii) the surface
$$x^2y + 2zx = 4$$
 at the point $(2, -2,3)$. Ans: $\frac{-\hat{\imath}+2\hat{\jmath}+2\hat{k}}{3}$

Dept. of Maths., BMSCE

Unit 2: Vector Calculus

the surface $xy^3z^2 = 4$ at the point (-1, -1, 2). (iv)

- Ans: $\frac{-\hat{\iota}-3\hat{\jmath}+\hat{k}}{\sqrt{11}}$ Ans: $\frac{3\hat{\iota}+4\hat{\jmath}-6\hat{k}}{\sqrt{61}}$
- the surface $x^2y 2zx + 2y^2z^4 = 10$ at the point (2,1,-1). (v)

Ans:
$$\frac{3\hat{i}+4\hat{j}-6\hat{k}}{\sqrt{61}}$$

Angle between two surfaces:

Angle between two surfaces f and g is given by $cos\theta = \frac{\nabla f \cdot \nabla g}{|\nabla f| |\nabla g|}$

1. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at (2, -1, 2).

Ans:
$$\cos^{-1} \frac{8\sqrt{21}}{63}$$
.

2. Calculate the angle between the normals to the surface $xy = z^2$ at the points (4,1,2) and (3,3,-3).

Ans:
$$\cos^{-1}\left(-\frac{1}{\sqrt{11}}\right)$$
.

- 3. Show that the surfaces $4x^2y + z^4 = 12$ and $6x^2 yz = 9x$ intersect orthogonally at the point (1, -1, 2)
- 4. Find the constants a and b so that the surfaces $ax^2 byz = (a+2)x$ is orthogonal to the surface $4x^2y + z^3 = 4$ at the point (1, -1, 2). **Ans:** a = 2.5 , b = 1

Directional derivative

Directional derivative of ϕ in the direction of \overrightarrow{a} at a point P is given by $\nabla \phi|_{P} \cdot a = \nabla \phi|_{P} \cdot \frac{a}{|\overrightarrow{a}|}$.

Geometrically, the directional derivative of ϕ in the direction of a at a point P is the rate of change of ϕ at a point P in the direction of \overline{a} .

- 1. Find the directional derivatives of $f(x, y, z) = xy^2 + yz^3$ at the point (2, -1, 1) in the direction of:
 - a. the vector $\hat{i} + 2j + 2k$.

Ans:
$$\frac{-11}{3}$$

b. the normal to the surface $x \log z - y^2 = -4$ at (-1, 2, 1).

Ans:
$$\frac{15}{\sqrt{17}}$$

- Find the directional derivative of $f(x, y, z) = 4e^{2x-y+z}$ at the point (1,1,-1) in the direction towards the point (-3, 5, 6).
- Find the directional derivative of $x^2y^2z^2$ at the point (1,1,-1) in the direction of the tangent to the curve $x = e^t$, $y = 1 + 2\sin t$ and $z = t - \cos t$, where $-1 \le t \le 1$.
- The temperature of points in space is given $T(x, y, z) = x^2 + y^2 z$. A mosquito located at (1,1,2) desires to fly in such a direction it will get warm as soon as possible. In what direction **Ans:** 2i + 2j - kshould it move?

- 5. The experiments show that the heat flows in the direction of maximum decrease of temperature T. Find this direction when the temperature $T = x^2 + y^2 + 4z^2$ at the point (2, -1, 2).
- 6. In which direction from (3,1,-2) is the directional derivative of $\phi(x,y,z) = x^2y^2z^4$ maximum? Also find the magnitude of this maximum. **Ans:** $96(\hat{\imath} + 3\hat{\jmath} - 3\hat{k})$; $96\sqrt{19}$
- 7. Find the values of the constants a, b and c so that the directional derivative of $f = axy^2 + byz + cz^3x^3$ at (1, 2, -1) has a maximum of magnitude 64 in a direction parallel to the z-axis.

 Ans: $a = \frac{16}{3}$, $b = \frac{64}{3}$, $c = \frac{64}{9}$
- 8. If the directional derivative of $\phi = axy^2 + byz + cz^2x^3$ at (-1, 1, 2) has maximum magnitude of 32 units in the direction parallel to y-axis find a, b, c.

 Ans: a = -12, b = 4, c = 1

Vector point function

A Function $f: \mathbb{R}^3 \to \mathbb{R}^3$, whose values are vectors that depends on a point P = P(x, y, z) i.e. $\overrightarrow{f}(x, y, z) = f_1(x, y, z) \hat{i} + f_2(x, y, z) j + f_3(x, y, z) k$.

Divergence of a vector point function

The divergence of a continuously differentiable vector point function $\vec{f} = f_1 \hat{i} + f_2 j + f_3 k$ is denoted by $div \vec{f}$ and is defined as $div \vec{f} = \nabla \cdot \vec{f} = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$.

Physical interpretation: If \overrightarrow{v} is the velocity field then $div(\overrightarrow{v})$ gives the rate at which fluid is originating at a point per unit volume. Alternately the divergence measures the outflow minus the inflow.

Solenoidal vector: A vector $\vec{F} = f_1 \hat{i} + f_2 j + f_3 k$ is said to be solenoidal if $div \vec{F} = 0$. (the flux entering any element of space is the same as that leaving it.)

Curl of a vector point function

The curl of a continuously differentiable vector point function $\vec{f} = f_1 \hat{i} + f_2 j + f_3 k$ is denoted by $curl \vec{f}$ and is defined as:

$$\operatorname{curl} \vec{f} = \nabla \times \vec{f} = \left(\frac{\partial}{\partial x} \hat{i} + \frac{\partial}{\partial y} j + \frac{\partial}{\partial z} k \right) \times f_1 \hat{i} + f_2 j + f_3 k = \begin{vmatrix} \hat{i} & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_1 & f_2 & f_3 \end{vmatrix}.$$

STOCKORE WITH

B.M.S. COLLEGE OF ENGINEERING, BENGALURU – 560 0 19

Autonomous college, affiliated to VTU

DEPARTMENT OF MATHEMATICS

Physical interpretation: If \overrightarrow{v} is the linear velocity and $\overrightarrow{\omega}$ is the angular velocity, then $\overrightarrow{v} = \overrightarrow{\omega} \times \overrightarrow{r}$ and $\nabla \times \overrightarrow{v} = 2\overrightarrow{\omega}$. Hence $curl \overrightarrow{F}$ gives the measure of the rotation of the vector field at any point.

<u>Irrotational vector</u>: A vector $\vec{F} = f_1 \hat{i} + f_2 j + f_3 k$ is said to be irrotational if $curl \vec{F} = 0$. (any motion in which the angular velocity at any point is zero.)

1. Evaluate

a.
$$div \left[3x^2 \hat{i} + 5xy^2 \hat{j} + xyz^3 \hat{k} \right]$$
 at the point (1,2,3).

b.
$$\nabla . (2x^2z\hat{i} - xy^2z\hat{j} + 3yz^2\hat{k})$$
 at the point (1,1,1).

c.
$$\nabla \cdot \left(e^y \sin x \cos z \ \hat{i} + e^{-x} \sin y \cos z \ \hat{j} + z^2 e^z \ \hat{k}\right)$$
.

d.
$$\nabla \cdot \left(3xyz^2\hat{i} + 2xy^3\hat{j} - x^2yz\hat{k}\right)$$
.

2. Show that each of following vectors are solenoidal:

(i)
$$(-x^2 + yz)\hat{i} + (4y - z^2x)\hat{j} + (2xz - 4z)\hat{k}$$
.

(ii)
$$3y^4z^2\hat{i} + 4x^3z^2\hat{j} - 3x^2y^2\hat{k}$$
.

(iii)
$$(x+3y)\hat{i} + (y-3z)j + (x-2z)k$$

(iv)
$$3y^4z^2\hat{i} + 4x^3z^2j + 3x^2y^2k$$

3. If $\vec{F} = (x+y+1)\hat{i} + j - (x+y)k$ show that $\vec{F} \cdot curl \vec{F} = 0$.

4. Find $div \vec{F}$ and $curl \vec{F}$, where $F = grad(x^3 + y^3 + z^3 - 3xyz)$.

Ans:
$$div \vec{F} = 6(x+y+z)$$
, $curl \vec{F} = 0$

5. Evaluate $\operatorname{curl}\left(xyz\hat{i} + 3x^2yj + \left(xz^2 - y^2z\right)k\right)$ at the point (1,2,3).

Ans:
$$-2yz\hat{i} + (xy - z^2)j + x(6y - z)k$$

6. Find the value of a if the vector $(ax^2y + yz)\hat{i} + (xy^2 - xz^2)j + (2xyz - 2x^2y^2)k$ has zero divergences. Find the curl of the above vector which has zero divergence.

Ans:
$$a = -2$$
, $4x(z-xy)\hat{i} + (y-2yz+4xy^2)j + (2x^2+2y^2-z^2-z)k$.

7. If $\vec{r} = x\hat{i} + yj + zk$ and $r = |\vec{r}|$, show that $r^n \vec{r}$ is solenoidal for n = -3 and irrotational for all n.

- 8. If $f = (x^2 + y^2 + z^2)^{-n}$, find div(grad f) and determine n if div(grad f) = 0.
- 9. Find f, given

a.
$$\nabla f = 2xyz^3 \hat{i} + x^2z^3 \hat{j} + 3x^2yz^2 \hat{k}$$
 if $f(1, -2, 2) = 4$.

b.
$$\nabla f = (y^2 - 2xyz^3)\hat{i} + (3 + 2xy - x^2z^3)\hat{j} + (6z^3 - 3x^2yz^2)\hat{k}$$
 if $f(1,0,1) = 8$.

c.
$$\nabla f = 2x\hat{i} + 4y\hat{j} + 8z\hat{k}$$
.

d.
$$\nabla f = \frac{1}{z^2} \left(zy\hat{i} + xz\hat{j} - xy\hat{k} \right)$$
.

e.
$$\nabla f = xy\hat{\imath} + x^2y\hat{\jmath}$$

- 10. A vector field is given by $F = (x^2 y^2 + x)\hat{i} (2yx + y)j$. Show that the field is irrotational and find its scalar potential.

 Ans: $\phi = \frac{x^3}{3} xy^2 + \frac{x^2}{2} \frac{y^2}{2}$.
- 11. A vector field is given by $F = (6xy + z^3)\hat{i} + (3x^2 z)j + (3xz^2 y)k$. Show that the field is irrotational and find its scalar potential.
- 12. A fluid motion is given by $V = (y+z)\hat{i} + (z+x)j + (x+y)k$. Is this motion irrotational? If so, find the velocity potential. **Ans:** Yes. $\phi = xy + yz + zx$.
- 13. If $\vec{F} = 2xyz^2\hat{i} + (x^2z^2 + z\cos yz)j + (2x^2yz + y\cos yz)k$, show that \vec{F} is a potential field or conservative field and hence find its scalar potential
- 14. A vector field is given by $F = (x^2 y^2 + x)\hat{i} (2yx + y)j$. Show that the field is irrotational and find its scalar potential.

 Ans: $\phi = \frac{x^3}{3} xy^2 + \frac{x^2}{2} \frac{y^2}{2}$.
- 15. A fluid motion is given by $V = (y+z)\hat{i} + (z+x)j + (x+y)k$. Is this motion irrotational? If so, find the velocity potential. **Ans:** Yes. $\phi = xy + yz + zx$.

16. If
$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
 and $r = |\vec{r}|$, prove that

a.
$$\operatorname{div}(\operatorname{grad} r^n) = \nabla^2(r^n) = n(n+1)r^{n-2}$$

b.
$$\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$$
.

c.
$$grad(div \hat{r}) = \frac{-2r}{r^3}$$

Vector Integration

Line integrals

If \vec{F} is a vector field with continuous components defined along a smooth curve C parametrized by $\vec{r}(t)$ with $a \le t \le b$, then the line integral of \vec{F} along a curve C denoted by $\int_C \vec{F} \cdot d\vec{r}$ can be seen

as

$$\int_{C} \overrightarrow{F} \cdot d\overrightarrow{r} = \lim_{n \to \infty} \left[\sum_{i=1}^{n} \overrightarrow{F} \left(\overrightarrow{r_i} \right) \cdot \Delta \overrightarrow{r_i} \right].$$

It is given by

$$\int_{C} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{P}^{Q} F_{1} dx + F_{2} dy + F_{3} dz$$

where $\vec{F} = F_1 \hat{i} + F_2 \hat{j} + F_3 \hat{k}$ and P and Q are points on the curve C.

Geometrically if \vec{F} is the force acting on an object then $\int_C \vec{F} \cdot d\vec{r}$ is the work done in moving the object along the curve C from P to Q.

If \overrightarrow{F} is a continuous velocity field then $\int_C \overrightarrow{F} \cdot d \overrightarrow{r}$ is the flow along the curve C from P to Q. If curve C simple closed curve then the flow is said to be the **circulation** of \overrightarrow{F} around C.

In general, the line integral in a domain depends on the curve C joining the two points P and Q. If the vector field is such that the line integral is independent of the path, then such vector fields are called **conservative** fields.

Problems:

- 1. If $\vec{F} = 3xy\hat{i} y^2j$ evaluate $\int_C \vec{F} \cdot d\vec{r}$ where C is the curve in the xy-plane $y = 2x^2$ from (0,0) to (1,2).
- 2. If $\vec{f} = (2y+3)\hat{i} + (yz-x)\hat{j} + (yz-x)\hat{k}$, evaluate the $\iint_C \vec{f} \cdot d\vec{r}$, where C is the curve $x = 2t^2$, y = t and $z = t^3$ from the point (0,0,0) to the point (2,1,1).
- 3. Find the work done in moving a particle in the force field $\vec{F} = 3x^2\hat{i} + (2xz y)j + zk$ along a. the straight line from (0,0,0) to (2,1,3).
 - b. the curve defined by $x^2 = 4y$, $3x^3 = 8z$ from x = 0 to x = 2. Answer

- 4. A vector field is given by $\vec{F} = (\sin y)\hat{i} + x(1 + \cos y)j$. Evaluate the line integral over a circular path given by $x^2 + y^2 = a^2$, z = 0.
- 5. Compute the line integral $\int_C y^2 dx x^2 dy$ about the triangle whose vertices are (1,0), (0,1) and (-1,0).
- 6. Evaluate $\iint_C \overrightarrow{f} \cdot \overrightarrow{dr}$, $\overrightarrow{f} = [2z, x, -y]$ and C is $\overrightarrow{r} = [\cos t, \sin t, 2t]$ from (1, 0, 0) to $(1, 0, 4\pi)$.

Green's theorem in the plane

If M(x, y), N(x, y), M_y and N_x be continuous in a region R of the xy-plane bounded by a simple closed curve C, then $\int_C M dx + N dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy.$

Problems:

- 1. Apply Green's theorem to evaluate $\int_C (xy + y^2) dx + x^2 dy$, where C is bounded by y = x and $y = x^2$ Ans: $-\frac{1}{20}$
- 2. Apply Green's theorem to evaluate $\int_C (3x 8y^2) dx + (4y 6xy) dy$, where C is bounded by x = 0, y = 0 and x + y = 1 Ans: $\frac{5}{3}$
- 3. Apply Green's theorem, evaluate $\int_C (y \sin x) dx + \cos x dy$ where C is the triangle enclosed by the lines y = 0, $x = \frac{\pi}{2}$ and $y = \frac{2x}{\pi}$.

 Ans: $-\left(\frac{\pi}{4} + \frac{2}{\pi}\right)$
- 4. Using Green's theorem evaluate $\int_C (x^2 + y^2)\hat{\imath} 2xy\,\hat{\jmath}$ where C is the rectangle bounded by x = 0, x = 1, y = 0, y = 1.
- 5. Apply Green's theorem to evaluate $\int_C (2x^2 y^2) dx + (x^2 + y^2) dy$, where C is bounded by x -axis and upper half of the circle $x^2 + y^2 = a^2$ Ans: $\frac{4a^3}{3}$
- 6. Using Green's theorem evaluate $\int_C (x^2 + xy)dx + (x^2 + y^2)dy$ where C is a square bounded by x = -1, x = 1, y = -1, y = 1.

 Ans: 0

Surface integrals

Orientable surface: A surface S is said to be orientable or two-sided surface if it is possible to define a field n of unit normal vectors on S that varies continuously with position. Once n has

been chosen, we say that we have oriented the surface, and we call the surface together with its normal field an oriented surface. The vector n at that point is called the positive direction.

Example: Mobius strip is not an oriented surface.

The **surface integral** of a vector field \vec{F} over an oriented or two-sided surface S is represented as

$$\int_{S} \overrightarrow{F} \cdot d\overrightarrow{S} = \iint_{S} \overrightarrow{F} \cdot n \, dS$$

where dS depends on the projection of the surface on the coordinate planes and is given

Projection of the surface	dS
On XY plane	$\frac{dxdy}{\left n\cdot k\right }$
On YZ plane	$\frac{dydz}{\left n\cdot\hat{i}\right }$
On XZ plane	$\frac{dxdz}{\left n\cdot j\right }$

Geometrically, the flux of a three-dimensional vector field \vec{F} across an oriented surface S in the direction of n is given by the surface integral of the vector field \vec{F} .

Stoke's theorem

Let S be a piece-wise smooth oriented surface having a piecewise smooth boundary curve C and $\overrightarrow{F} = f_1 \hat{i} + f_2 j + f_3 k$ be continuously differentiable vector point function on an open region containing S, then $\iint_C \overrightarrow{F} \cdot d\overrightarrow{r} = \iint_S \text{curl } \overrightarrow{F} \cdot n \, dS$ where n is a unit external normal vector at any point.

Problems:

- 1. Apply Stoke's theorem, evaluate $\iint_C (y+x)dx + (2x-z)dy + (y+z)dz$ where C is the boundary of the triangle with vertices (2,0,0), (0,3,0) and (0,0,6). Ans: 21.
- 2. $c \iint_C (2x-y)dx yz^2dy y^2zdz$ where C is the projection over the upper half of the sphere $x^2 + y^2 + z^2 = a^2$ in the xy-plane. **Ans:** πa^2
- 3. If $f = 3yi xzj + yz^2k$ and s is the surface of the paraboloid $2z = x^2 + y^2$ bounded by z = 2, evaluate $\iint_S \left(\text{curl } \vec{f} \right) \cdot ndS$ using Stoke's theorem. **Ans:** -20 π

Dept. of Maths., BMSCE

Unit 2: Vector Calculus

- 4. Apply Stoke's theorem to evaluate $\iint_C y dx + xz^3 dy zy^3 dz$ where C is the circle $x^2 + y^2 = 4$ in z = 1.5.
- 5. Evaluate $\int_C xy \, dx + xy^2 dy$ using Stoke's theorem where C is the square in the x-y plane with vertices (1,0), (-1,0), (0,1) and (0,-1) respectively.

 Ans: $\frac{4}{3}$
- 6. If $f=(x^2+y^2)i-2xyj$ evaluate evaluate $\iint_C f.dr$ using Stoke's theorem, where C is is bounded by the lines x=-a, x=a, y=0, y=b. Ans: $-4ab^2$
- 7. Apply Stoke's theore to evaluate $\iint_C \vec{F} \cdot d\vec{r}$, where $F = (x^2 y^2)i + 2xyj$ over the rectangular box bounded by the planes x = 0, x = a, y = 0, y = b, z = 0, z = c with the face z = 0 removed.

 Ans: $2ab^2$