DEPARTMENT OF MATHEMATICS

Course Code: 23MA1BSMCS, 23MA1BSCEM

Course: Mathematical Foundation for Computer Science Stream – 1

Mathematical Foundation for Civil, Electrical and Mechanical Engg. Stream - 1

RANK OF MATRICES: T.

Find the rank of the following matrices by reducing them into echelon form.

a)
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$$
.

e)
$$\begin{bmatrix} 1 & 3 & 4 & 3 \\ 3 & 9 & 12 & 3 \\ 1 & 3 & 4 & 1 \end{bmatrix}$$

i)
$$\begin{bmatrix} 1 & -2 \\ 3 & -6 \\ 7 & -1 \\ 4 & 5 \end{bmatrix}$$

b)
$$\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$$
.

Ans: $\rho=2$

$$f) \begin{bmatrix} 1 & 1 & -1 & 1 \\ 1 & -1 & 2 & -1 \\ 3 & 1 & 0 & 1 \end{bmatrix}$$

Ans: $\rho=2$

f)
$$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 1 & -1 & 2 & -1 \\ 3 & 1 & 0 & 1 \end{bmatrix}$$
. j)
$$\begin{bmatrix} 5 & 6 & 7 & 8 \\ 6 & 7 & 8 & 9 \\ 11 & 12 & 13 & 14 \\ 16 & 17 & 18 & 19 \end{bmatrix}$$
.

Ans: $\rho=2$

c)
$$\begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$$
.

Ans: $\rho=3$

g)
$$\begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$$
.

$$k) \begin{bmatrix} 1 & 2 & -2 & 3 \\ 2 & 5 & -4 & 6 \\ -1 & -3 & 2 & -2 \\ 2 & 4 & -1 & 6 \end{bmatrix}.$$

Ans: $\rho=4$

d)
$$\begin{bmatrix} 1 & 4 & 5 \\ 2 & 6 & 8 \\ 3 & 7 & 22 \end{bmatrix}$$
.

Ans: $\rho=3$

h)
$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}.$$

2. Find 'b' if the rank of
$$\begin{bmatrix} 1 & 1 & -1 & 0 \\ 4 & 4 & -3 & 1 \\ b & 2 & 2 & 2 \\ 9 & 9 & b & 3 \end{bmatrix}$$
 is 3. Ans: $b = 2$ or $b = -6$.

II. Consistency and solution of the linear system of equations:

n = Number of Unknowns

1. Solve the following system of equations:

SL.NO	Questions	Answers
a	x + 2y + 3z = 0	
	3x + 4y + 4z = 0	x = y = z = 0
	7x + 10y + 12z = 0	
b	$2x_1 + 3x_2 - 4x_3 + x_4 = 0$	
	$x_1 - x_2 + x_3 + 2x_4 = 0$	$x_1 = \frac{(k_1 - 7k_2)}{5}, x_2 = \frac{(6k_1 + 3k_2)}{5}, x_3 = k_1, x_4 = k_2$
	$5x_1 - x_3 + 7x_4 = 0$	
	$7x_1 + 8x_2 - 11x_3 + 5x_4 = 0$	
c	$x_1 - 2x_2 - x_3 + 3x_4 = 0$	(61 101)
	$-2x_1 + 4x_2 + 5x_3 - 5x_4 = 0$	$x_1 = \frac{\left(6k_1 - 10k_2\right)}{3}, x_2 = k_1, x_3 = \frac{-k_2}{2}, x_4 = k_2$
	$3x_1 - 6x_2 - 6x_3 + 8x_4 = 0$	3 2
d	x + 3y - 2z = 0	101 01
	2x - y + 4z = 0	$x = \frac{-10k}{7}, y = \frac{8k}{7}, z = k$
	x - 11y + 14z = 0	
e	4x + 2y + z + 3w = 0	(1 . 1)
	6x + 3y + 4z + 7w = 0	$x = \frac{(k_1 + k_2)}{2}, y = k_1, z = -k_2, w = k_2$
	2x + y + w = 0	2

2. Discuss the consistency of the following system of linear equations

$$5x + 3y + 7z = 4$$

$$3x + 26y + 2z = 9$$

a)
$$7x + 2y + 10z = 5$$

Ans: Consistent and has infinitely many solutions

$$x = \frac{7 - 16k}{11}$$
 $y = \frac{k + 3}{11}$ $z = k$

$$4x - 2y + 6z = 8$$

$$x + y - 3z = -1$$

b) 15x - 3y + 9z = 21

Ans: Consistent and has infinitely many solutions

$$x = 1, y = 3k - 2, z = k$$

$$2x - 3y + 7z = 5$$

$$3x + y - 3z = 13$$

c)
$$2x+19y-47z=32$$

Ans: inconsistent

$$2x_1 + 3x_2 - x_3 = 1$$

$$3x_1 - 4x_2 + 3x_3 = -1$$

d)
$$2x_1 - x_2 + 2x_3 = -3$$

$$3x_1 + 1x_2 - 2x_3 = 4$$

Ans: Inconsistent

$$x + 2y + z = 3$$

$$2x + 3y + 2z = 5$$

$$3x - 5y + 5z = 2$$

e)
$$3x + 9y - z = 4$$

Ans: Consistent and has unique solution

$$x = -1$$
, $y = 1$, $z = 2$

$$2x + 6y + 11 = 0$$

$$6x + 20y - 6z + 3 = 0$$
$$6y - 18z + 1 = 0$$

$$6v - 18z + 1 = 0$$

Ans: inconsistent

$$2x_1 - 2x_2 + 4x_3 + 3x_4 = 9$$

$$x_1 - x_2 + 2x_3 + 2x_4 = 6$$

g)
$$2x_1 - 2x_2 + x_3 + 2x_4 = 3$$

$$x_1 - x_2 + x_4 = 2$$

Ans:Inconsistent

$$2x + y - z = 0$$

$$2x + 5y + 7z = 52$$

h)
$$x + y + z = 9$$

Ans: Consistent and has unique solution

$$x = 1, y = 3, z = 5$$

$$3x + 2y + 2z = 0$$

$$x + 2y = 4$$

i)
$$10y + 3z = -2$$

$$2x-3y-z=5$$

Ans: Consistent and has unique solution

$$x = 2, y = 1, z = -4$$

$$x_1 + x_2 - 2x_3 + x_4 + 3x_5 = 1$$

$$2x_1 - x_2 + 2x_3 + 2x_4 + 6x_5 = 2$$

$$3x_1 + 2x_2 - 4x_3 - 3x_4 - 9x_5 = 3$$

<u>j</u>) Ans: Consistent and

has infinitely many solutions

$$x_1 = 1$$
, $x_2 = 2a$, $x_3 = a$, $x_4 = -3b$, $x_5 = b$

$$2x + 3y + 5z = 9$$

3. Investigate the values of λ and μ so that the equations 7x + 3y - 2z = 8 have

$$2x + 3y + \lambda z = \mu$$

(i) no solution (ii) unique solution (iii) infinite number of solutions.

Ans: (i) If $\lambda = 5$ and $\mu \neq 9$ (ii) $\lambda \neq 5$ and μ can be any value (iii) $\lambda = 5$ and $\mu = 9$.

$$x + 2y + 3z = 6$$

4. Determine the values of a and b for which the system x+3y+5z=9 have (i) no solution (ii) a

$$2x + 5y + az = b$$

unique solution (iii) an infinite number of solutions.

Ans: (i) If a = 8 and $b \ne 15$ (ii) $a \ne 8$ and for any b (iii) a = 8 and b = 15.

5. Find the value of a for which the system x+2y+z=3; ay+5z=10; 2x+7y+az=b has a unique solution. Also, find the pair of values (a,b) for which it has infinitely many solutions.

$$x + ay + z = 3$$

6. Find the values of a and b for which the system of equations x + 2y + 2z = b is consistent.

$$x + 5y + 3z = 9$$

Ans: If a = -1 and b = 6 equations will be consistent and have an infinite number of solutions.

If $a \neq -1$ and b has any value, equations will be consistent and have a unique solution.

$$3x + 4y + 5z = a$$

7. Show that the equations 4x + 5y + 6z = b do not have a solution unless a + c = 2b.

$$5x + 6y + 7z = c$$

$$-2x + y + z = a$$

8. Test for consistency x-2y+z=b where a,b and c are constants.

$$x + y - 2z = c$$

Ans: if $a+b+c \neq 0$ inconsistent, if a+b+c=0, then infinitely many solutions.

III. Gauss elimination method:

1. Solve the following system of equations by Gauss elimination method:

SL NO	Questions	Answers
a	$2x_1 + x_2 + x_3 = 10$ $3x_1 + 2x_2 + 3x_3 = 18$ $x_1 + 4x_2 + 9x_3 = 16$	$x_1 = 7, x_2 = -9, x_3 = 5.$
b	2x + 2y + z = 12 $3x + 2y + 2z = 8$ $5x + 10y - 8z = 10$	$x = \frac{-51}{4}, y = \frac{115}{8}, z = \frac{35}{4}$
С	$2x_1 + 4x_2 + x_3 = 3$ $3x_1 + 2x_2 - 2x_3 = -2$ $x_1 - x_2 + x_3 = 6$	$x_1 = 2, x_2 = -1, x_3 = 3$
d	10x + 2y + z = 9 $2x + 20y - 2z = -44$ $-2x + 3y + 10z = 22$	x = 1, y = -2, z = 3
e	$2x_1 + x_2 + 4x_3 = 12$ $8x_1 - 3x_2 + 2x_3 = 20$ $4x_1 + 11x_2 - x_3 = 33$	$x_1 = 3, x_2 = 2, x_3 = 1.$

SL NO	Questions	Answers
f	$x_1 + 4x_2 - x_3 = -5$ $x_1 + x_2 - 6x_3 = -12$ $3x_1 - x_2 - x_3 = 4$	$x_1 = \frac{117}{71}, x_2 = -\frac{81}{71},$ $x_3 = \frac{148}{71}$
g	$2x_1 + x_2 + 3x_3 = 1$ $4x_1 + 4x_2 + 7x_3 = 1$ $2x_1 + 5x_2 + 9x_3 = 3$	$x_1 = \frac{-1}{2}, x_2 = -1, x_3 = 1.$
h	$2x_1 - 7x_2 + 4x_3 = 9$ $x_1 + 9x_2 - 6x_3 = 1$ $-3x_1 + 8x_2 + 5x_3 = 6$	$x_1 = 4, x_2 = 1, x_3 = 2$
i	$5x_1 + x_2 + x_3 + x_4 = 4$ $x_1 + 7x_2 + x_3 + x_4 = 12$ $x_1 + x_2 + 6x_3 + x_4 = -5$ $x_1 + x_2 + x_3 + 4x_4 = -6$	$x_1 = 1, x_2 = 2,$ $x_3 = -1, x_4 = -2$

$$3x - y + 4z = 3$$

2. Show that if $\lambda \neq -5$ the system of equations x + 2y - 3z = -2 have a unique solution. If $\lambda = -5$ $6x + 5y + \lambda z = -3$

show that the equations are consistent. Determine the solution in each case.

Ans: when
$$\lambda \neq -5$$
, $x = \frac{4}{7}$, $y = \frac{-9}{7}$, $z = 0$, when $\lambda = -5$, $x = \frac{4-5k}{7}$, $y = \frac{13k-9}{7}$, $z = k$.

$$5x + 3y + 2z = 12$$

3. Prove that the equations 2x + 4y + 5z = 2are incompatible unless c = 74; and in that case the 39x + 43y + 45z = c

equations are satisfied by x = 2 + t, y = 2 - 3t, z = -2 + 2t, where t is any arbitrary quantity.

$$x + y + z = 1$$

4. For what values of k, the equations 2x + y + 4z = k have a solution and solve them completely in $4x + y + 10z = k^2$

each case.

Ans: When k = 1, x = -3z, y = 2z + 1, when k = 2, x = 1 - 3z, y = 2z.

IV. **Gauss-Seidel Iteration method:**

If the system is diagonally dominant, then the method is known to give convergent solution.

Diagonal dominance is not a necessary condition.

Suppose AX = B is diagonally dominant with $A = (a_{ij})$, $X = (x_i)$ and $B = (b_i)$.

$$x_1^{n+1} = \frac{1}{a_{11}} \left(b_1 - a_{12} x_2^n - a_{13} x_3^n \cdots \right)$$

Then the iterative formula is
$$x_2^{n+1} = \frac{1}{a_{22}} (b_2 - a_{21} x_1^{n+1} - a_{23} x_3^n \cdots)$$

$$x_3^{n+1} = \frac{1}{a_{33}} \left(b_3 - a_{31} x_1^{n+1} - a_{32} x_2^{n+1} \cdots \right)$$
:

Solve the following system of equations by Gauss-Seidel method.

SL.NO.	Questions	Answers
1	20x + y - 2z = 17 $3x + 20y - z = -18.$ $2x - 3y + 20z = 25$	x = 1, y = -1, z = 1
2	5x + 2y + z = 12 $x + 4y + 2z = 15$ $x + 2y + 5z = 20$	x = 0.996, y = 2, z = 3
3	2x + y + 6z = 9 $8x + 3y + 2z = 13$ $x + 5y + z = 7$	x = 1, y = 1, z = 1
4	28x + 4y - z = 32 $x + 3y + 10z = 24$ $2x + 17y + 4z = 35$	x = 0.9876, y = 1.5090, z = 1.8485
5	10x + 2y + z = 9 $2x + 20y - 2z = -44$ $-2x + 3y + 10z = 22$	x=1, y=-2, z=3

SL.NO	Questions	Answers
6	83x+11y-4z = 95 $7x+52y+13z = 104$ $3x+8y+29z = 71$	x = 1.06, y = 1.37, z = 1.96
7	54x + y + z = 110 $2x + 15y + 6z = 72$ $-x + 6y + 27z = 85$	x = 1.926, y = 3.573, z = 2.425
8	$5x_1 - x_2 = 9$ $-x_1 + 5x_2 - x_3 = 4$ $-x_2 + 5x_3 = -6$	$x_1 = 1.99, x_2 = 0.99, x_3 = -1$
9	$8x_1 + x_2 - x_3 = 8$ $2x_1 + x_2 + 9x_3 = 12$ $x_1 - 7x_2 + 2x_3 = -4$	$x_1 = 1$ $x_2 = 1$, $x_3 = 1$
10	$4x_1 + 2x_2 + x_3 = 11$ $-x_1 + 2x_2 = 3$ $2x_1 + x_2 + 4x_3 = 16$	$x_1 = 1, x_2 = 2, x_3 = 3$
11	Start with $(2,2,-1)$ and solve $5x_1 - x_2 + x_3 = 10$ $2x_1 + 4x_2 = 12$ $x_1 + x_2 + 5x_3 = -1$	$x_1 = 2.5555, x_2 = 1.7222, x_3 = -1.0555$
12	$10x_1 + x_2 + x_3 = 12$ $2x_1 + 10x_2 + x_3 = 13$ $2x_1 + 2x_2 + 10x_3 = 14$	$x_1 = x_2 = x_3 = 1$
13	$27x_1 + 6x_2 - x_3 = 85$ $6x_1 + 15x_2 + 2x_3 = 72$ $x_1 + x_2 + 54x_3 = 110$	$x_1 = 2.4255, x_2 = 3.573, x_3 = 1.926$
14	$x_1 - 8x_2 + 3x_3 = -4$ $2x_1 + x_2 + 9x_3 = 12$ $8x_1 + 2x_2 - 2x_3 = 8$	$x_1 = x_2 = x_3 = 1$
15	$\begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ u \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 5 \end{bmatrix}$	x = 1, y = 2, z = 3, u = 4

V. Characteristic values (Eigenvalues) and characteristic vectors (Eigenvectors):

If A is a square matrix, then λ is said to be an eigenvalue of the matrix if there exists a non-zero vector X such that $AX = \lambda X \cdot X$ is called the eigenvector corresponding to the eigenvalue λ .

$$\lambda X = \lambda IX \Rightarrow (A - \lambda I)X = 0$$
. We seek non-trivial solutions of $(A - \lambda I)X = 0$.

X is non-trivial if $\rho(A - \lambda I) < n \Rightarrow |A - \lambda I| = 0$.

If A is a matrix of size 3×3 then $-\lambda^3 + Tr(A)\lambda^2 - \sum M_{ii}^{2\times 2}\lambda + |A| = 0$.

Find the eigenvalues and its corresponding eigenvectors for the following matrices:

a.
$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
. Ans: $\lambda = -2, 3, 6; x_1 = [-k, 0, k], x_2 = [k, -k, k], x_3 = [k, 2k, k]$

b.
$$\begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$$
, Ans: $\lambda = 2,3,5$; $x_1 = k_1[1,-1,0]$, $x_2 = k_2[1,0,0]$, $x_3 = k_3[3,2,1]$.

a.
$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
 Ans: $\lambda = -2, 3, 6; x_1 = [-k, 0, k], x_2 = [k, -k, k], x_3 = [k, 2k, k]$
b.
$$\begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$$
 Ans: $\lambda = 2, 3, 5; x_1 = k_1[1, -1, 0], x_2 = k_2[1, 0, 0], x_3 = k_3[3, 2, 1].$
c.
$$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
 Ans: $\lambda = 0, 3, 15; x_1 = [1, 2, 2], x_2 = [2, 1, -2], x_3 = [2, -2, 1]$

d.
$$\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
, Ans: $\lambda = 1, 2, 3$; $x_1 = [1, 0, -1], x_2 = [0, 1, 0], x_3 = [1, 0, 1]$

e.
$$\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$
, Ans: $\lambda = 5, -3, -3$; $x_1 = k[1, 2, -1]$, $x_2 = [3k_1 - 2k_2, k_2, k_1]$

f.
$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
, Ans: $\lambda = 8, 2, 2$; $x_1 = [2, -1, 1]$, $x_2 = [1, 0, -2]$, $x_3 = [1, 2, 0]$

f.
$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
, Ans: $\lambda = 8, 2, 2$; $x_1 = [2, -1, 1]$, $x_2 = [1, 0, -2]$, $x_3 = [1, 2, 0]$
g.
$$\begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{bmatrix}$$
, Ans: $\lambda = 1, -1, 4$; $x_1 = [2, -1, 1]$, $x_2 = [0, 1, 1]$, $x_3 = [-1, -1, 1]$

h.
$$\begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix}$$
, Ans: $\lambda = 1, 2, 2$; $x_1 = k_1[1, 1, -1]$, $x_2 = k_2[2, 1, 0]$, $x_3 = k_3[2, 1, 0]$

i.
$$\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$
, Ans: $\lambda = 5,1,1$; $x_1 = [1,1,1]$, $x_2 = [1,0,-1]$, $x_3 = [2,-1,0]$

j.
$$\begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$$
, Ans: $\lambda = 2, 2, 3$; $x_1 = x_2 = [5, 2, -3]$, $x_3 = [1, 1, -2]$

k.
$$\begin{bmatrix} 2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$
, Ans: $\lambda = 2, 2, -2$; $x_1 = x_2 = [0, 1, 1]$, $x_3 = [-4, -1, 1]$

1.
$$\begin{bmatrix} 3 & -2 & -5 \\ 4 & -1 & -5 \\ -2 & -1 & -3 \end{bmatrix}$$
, Ans: $\lambda = -5, 2, 2$; $x_1 = [3, 2, 4], x_2 = x_3 = [1, 3, -1]$

VI. Rayleigh Power Method:

Find AX_i and express $AX_i = |\lambda_i| X_{i+1}$ where $|\lambda_i|$ is the numerically largest element of X_i . Iterate until desired accuracy.

The largest/dominant eigenvalue is given by $\lambda = \frac{\langle AX_n, X_n \rangle}{\langle X_n, X_n \rangle} = \frac{X_n^T (AX_n)}{X_n^T X_n}$.

Find the dominant eigenvalue and the corresponding eigenvector of the following matrices.

- 1. $\begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$ by taking the initial vector as $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$.
- 2. $\begin{bmatrix} -0.5 & 0.5 & -1 \\ 0.5 & -0.5 & 1 \\ -1 & 1 & 0 \end{bmatrix}$ by taking the initial vector as $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$. Ans: $\lambda \approx -2$. Others are 1 and 0.
- 3. $\begin{bmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{bmatrix}$ by taking the initial vector as $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$.
- 4. $\begin{bmatrix} -8 & 6 & -2 \\ 6 & -7 & 4 \\ -2 & 4 & -3 \end{bmatrix}$ by taking the initial vector as $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$. Ans: $\lambda \approx -15$.
- 5. $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ by taking the initial vector as $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$.
- 6. $\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$ by taking the initial vector as a) $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ and b) $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.
- 7. $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ by taking the initial vector as $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.

8.
$$\begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{bmatrix}$$
 by taking the initial vector as $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$.

VII. APPLICATIONS:

TRAFFIC FLOW PROBLEMS

1. Find the traffic flow in the net of one-way street directions shown in the figure:

2. Find the traffic flow in the net of one-way street directions shown in the figure:

- 3. The flow of traffic (in vehicles per hour) through a network of streets is shown in the figure.
 - i. Solve this system for x_i , $i=1, 2, \dots 5$
 - ii. Find the traffic flow when $x_3=0$ and $x_5=0$.
 - iii. Find the traffic flow when $x_3=x_5=100$

4. Following figure represents traffic entering and leaving a round of road junction, such junctions are common in Basavangudi.

- (i) Construct a mathematical model that describe the flow of traffic along various branches.
- (ii) What is the minimum flow theoretically possible along branch AB.? What are the other flows at that time?
- (iii) What is the minimum flow theoretically possible along branch DA if the branch BC is under repair? What is the other flow at that time?
- (iv) If it possible to repair branch CD without having another alternative road.

BALANCING CHEMICAL EQUATIONS

Balance the following chemical equations using matrix method.

- 1. $B_2S_3 + H_2O \rightarrow H_3BO_3 + H_2S$
- 2. $C_2H_6 + O_2 \rightarrow CO_2 + H_2O$
- 3. $KClO_3 \rightarrow KCl + O_2$
- 4. $NA + H_2O \rightarrow NaOH + H_2$