

Dept. of Math., BMSCE

Unit 1: Differential Calculus - 1

Polar Curves:

Angle between radius vector and tangent:

If $r = f(\theta)$, then the angle between radius vector and tangent is given by

$$\tan \phi = r \frac{d\theta}{dr}.$$

- 1. If ϕ be the angle between radius vector and the tangent at any point of the curve $r = f(\theta)$ then prove that $tan(\phi) = r \frac{d\theta}{dr}$.
- 2. Find the angle between the radius vector and the tangent for the following polar curves.

a)
$$r = a(1 + \cos \theta)$$

Ans:
$$\pi/2 + \theta/2$$
.

b)
$$r^2 = a^2 \sin^2 \theta$$

Ans:
$$\phi = \theta$$

c)
$$\frac{l}{r} = 1 + e \cos \theta$$

Ans:
$$\phi = \tan^{-1} \left[\frac{1 + e \cos \theta}{e \sin \theta} \right]$$
.

d)
$$r^m \cos m\theta = a^m$$

Ans:
$$\pi/2 - m\theta$$

3. Find the angle between the radius vector and the tangent for the following polar curves. And also find slope of the tangent at the given point.

e)
$$\frac{2a}{r} = 1 - \cos\theta$$
 at $\theta = 2\pi/3$

Ans:
$$\phi = \frac{2\pi}{3}$$
, $\tan \psi = \sqrt{3}$.

f)
$$r\cos^2(\theta/2) = a^2 \text{ at } \theta = 2\pi/3$$

Ans:
$$\phi = \frac{\pi}{6}$$
.

g)
$$r^2 \cos(2\theta) = a$$

Ans:
$$\phi = \frac{\pi}{2} - 2\theta$$
; $\psi = \frac{\pi}{2} - \theta$

Angle between curves:

Angle of intersection of two polar curves = angle of intersection of their tangents denoted by α

$$\alpha = |\phi_2 - \phi_1| \quad \text{or } \tan \alpha = \left| \frac{\tan \phi_1 - \tan \phi_2}{1 + \tan \phi_1 \tan \phi_2} \right|$$

- **4.** Find the angle of intersection of the following pair of curves:
 - a) $r = \sin \theta + \cos \theta$, $r = 2\sin \theta$

Ans: $\pi/4$

b)
$$r^2 \sin 2\theta = 4$$
 and $r^2 = 16 \sin 2\theta$

Ans: $\pi/3$.

c)
$$r = a$$
 and $r = 2a\cos\theta$.

Ans:
$$\pi/3$$
.

Dept. of Math., BMSCE

Unit 1: Differential Calculus - 1

d)
$$r = \frac{a}{\log \theta}$$
 and $r = a \log \theta$

Ans:
$$\tan^{-1}\left(\frac{2e}{1-e^2}\right)$$
.

e)
$$r = \frac{a\theta}{1+\theta}$$
 and $r = \frac{a}{1+\theta^2}$

Ans:
$$tan^{-1} 3$$
.

f)
$$r = a$$
 and $r = 2a\cos\theta$.

Ans:
$$\pi/3$$
.

g)
$$r = 3\cos(\theta)$$
 and $r = 1 + \cos(\theta)$

Ans:
$$\frac{\pi}{6}$$
.

5. Show that the following pair of curves intersect each other orthogonally.

a)
$$r = a(1 + \cos \theta)$$
 and $r = b(1 - \cos \theta)$.

b)
$$r = a \cos \theta$$
 and $r = a \sin \theta$.

c)
$$r = 4\sec^2(\theta/2)$$
 and $r = 9\csc^2(\theta/2)$.

d)
$$r^n = a^n \cos(n\theta)$$
 and $r^n = b^n \sin(n\theta)$.

e)
$$r^2 \sin 2\theta = a^2$$
 and $r^2 \cos 2\theta = b^2$.

f)
$$r = ae^{\theta}$$
 and $re^{\theta} = b$.

g)
$$\frac{2a}{r} = 1 + \cos\theta$$
 and $\frac{2b}{r} = 1 - \cos\theta$.

h)
$$r = a \cos \theta$$
 and $r = a \sin \theta$.

i)
$$r = a\theta$$
 and $r = \frac{a}{\theta}$

Length of the perpendicular from pole to the tangent for the polar curve:

$$p = r \sin \phi$$
 or $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$

p is the length of perpendicular from pole to the tangent ϕ is the angle between radius vector and tangent

Dept. of Math., BMSCE

Unit 1: Differential Calculus - 1

- 1. If p denotes the length of the perpendicular from pole to the tangent of the curve $r = f(\theta)$, then prove that $p = r \sin \phi$ and hence deduce that $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$
- 2. Find the length of the perpendicular from the pole to the tangent for the following curves

a)
$$r = a(1 - \cos \theta)$$
 at $\theta = \pi/2$

Ans:
$$a/\sqrt{2}$$

b)
$$r = a(1 + \cos \theta)$$
 at $\theta = \pi/2$.

Ans:
$$a/\sqrt{2}$$

c)
$$r^2 = a^2 \cos 2\theta$$
 at $\theta = \pi$.

d)
$$r^2 = a^2 \sec 2\theta$$
 at $\theta = \pi/6$.

Ans:
$$a/\sqrt{2}$$
.

e)
$$\frac{2a}{r} = (1 - \cos \theta)$$
 at $\theta = \pi/2$

Ans:
$$\sqrt{2}(a)$$

f)
$$r = a \sec^2(\theta/2)$$
 at $\theta = \pi/3$

Ans:
$$2a/\sqrt{3}$$

Pedal Equation:

Relation between r and p, obtained using $p = r \sin \phi$ or $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$

1. Find the pedal equation of the following curves:

a)
$$r = ae^{\theta \cot \alpha}$$
.

Ans:
$$p = r \sin \alpha$$

b)
$$r(1-\cos\theta)=2a$$

Ans:
$$p^2 = ar$$

c)
$$r^m \cos(m\theta) = a^m$$

Ans:
$$pr^{m-1} = a^m$$
.

d)
$$\frac{l}{r} = 1 + e \cos \theta$$

Ans:
$$\frac{1}{p^2} = \frac{e^2 - 1}{l^2} + \frac{2}{lr}$$
.

Curvature and Radius of Curvature

Curvature =
$$\kappa = \frac{d\psi}{ds}$$
.

Radius of curvature =
$$\rho = \frac{1}{\kappa}$$
; $\kappa \neq 0$.

Cartesian Form:

Dept. of Math., BMSCE

Unit 1: Differential Calculus - 1

Ans: a/2

Radius of curvature (Cartesian form), $\rho = \frac{\left(1 + y_1^2\right)^{3/2}}{y_2}$, where $y_1 = \frac{dy}{dx}$ and $y_2 = \frac{d^2y}{dx^2}$

If
$$y_1 \to \infty$$
 then $\rho = \frac{\left[\left(\frac{dx}{dy} \right)^2 + 1 \right]^{\frac{3}{2}}}{\frac{d^2x}{dy^2}}$

Find the radius of curvature for the following curves:

a. The Folium $x^3 + y^3 = 3axy$ at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$

b. Catenary $y = c \cosh\left(\frac{x}{c}\right)$ at (0,c).

c. $y^2 = \frac{a^2(a-x)}{x}$ at (a,0).

d. $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at $\left(\frac{a}{4}, \frac{a}{4}\right)$. Ans: $\frac{a}{\sqrt{2}}$

e. $y = 4\sin x - \sin(2x)$ at $x = \frac{\pi}{2}$. Ans: $\frac{5\sqrt{5}}{4}$

f. $r(1+\cos\theta) = a$ Ans: $\frac{(2r)^{3/2}}{\sqrt{a}}$.

g. $r^n = a^n \cos n\theta$ Ans: $\frac{a^n}{(n+1)r^{n-1}}$.

h. $r = a(1 + \cos \theta)$ Ans: $\frac{2}{3}\sqrt{2ar}$.

2. Find the radius of curvature for $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at (a,0) and (0,b). Ans:

3. Find the radius of curvature for $y^2 = 4ax$ at (x, y).

4. If ρ is the radius of curvature for $y = \frac{ax}{a+x}$ then prove that $\left(\frac{x}{y}\right)^2 + \left(\frac{y}{x}\right)^2 = \left(\frac{2\rho}{a}\right)^{\frac{2}{3}}$.

Dept. of Math., BMSCE

Unit 1: Differential Calculus - 1

Polar form:

Radius of curvature in polar coordinates: $\rho = \frac{\left(r^2 + r_1^2\right)^{3/2}}{r^2 + 2r_1^2 - rr_2}$; where $r_1 = \frac{dr}{d\theta}$ and $r_2 = \frac{d^2r}{d\theta^2}$

Alternative:

Radius of curvature in **Pedal form**:

$$\rho = r \frac{dr}{dp}$$

- 1. If ρ_1 and ρ_2 are the radii of curvature at the extremities of a chord through the pole for the polar curve $r = a(1 + \cos\theta)$, prove that $\rho_1^2 + \rho_2^2 = \frac{16a^2}{9}$.
- 2. Show that for the curve $r(1-\cos\theta) = 2a$, ρ^2 varies as r^3 .
- 3. For the cardioid $r = a(1 + \cos \theta)$, show that $\frac{\rho^2}{r}$ is constant.
- 4. Find the radius of curvature at the point (r, θ) for the curve $r^n = a^n \sin n\theta$.
- 5. Find the radius of curvature for the curve $\frac{l}{r} = 1 + e \cos \theta$ at any point (r, θ) .
- 6. Write the p-r equation of the polar curve $r^n = a^n \sin n\theta$ and find the radius of curvature to the curve.
- 7. Find the pedal equation of the polar curve $r = f(\theta)$ and find the radius of curvature at any point (r, θ)

(i)
$$r = a(1 + \cos \theta)$$

Ans:
$$\frac{2}{3}\sqrt{2ar}$$

(ii)
$$r = ae^{\theta \cot \alpha}$$

Ans:
$$r\cos ec\alpha$$

(iii)
$$r^2 = a^2 \cos 2\theta$$

Ans:
$$\frac{a^2}{3r}$$

(iv)
$$r^m = a^m \cos m\theta$$

Ans:
$$\frac{a^m}{(m+1)r^{m-1}}$$

Dept. of Math., BMSCE

Unit 1: Differential Calculus - 1

Parametric form:

Radius of curvature in parametric form:

$$\rho = \frac{\left(x_1^2 + y_1^2\right)^{3/2}}{x_1 y_2 - x_2 y_1}; \text{ where } x_1 = \frac{dx}{dt}; y_1 = \frac{dy}{dt}, x_2 = \frac{d^2 x}{dt^2}, y_2 = \frac{d^2 y}{dt^2}$$

Find the radius of curvature for the following curves:

$$x = 6t^2 - 3t^4$$
; $y = 8t^3$

1.
$$x = e^t + e^{-t}$$
: $y = e^t - e^{-t}$ at $t = 0$

2.
$$x = \frac{a\cos(t)}{t}$$
; $y = \frac{a\sin(t)}{t}$

3.
$$x = a \ln(\sec t + \tan t)$$
; $y = a \sec t$

4.
$$x=1-t^2$$
; $y=t-t^3$; $at t = \pm 1$

5.
$$x = 2t^2 - t^4$$
; $y = 4t^3$ at $t = 1$

6.
$$x = a \left(t - \frac{t^3}{3} \right); \ y = at^2$$

7.
$$x = \ln(t)$$
; $y = \frac{1}{2}(t + t^{-1})$

8.
$$x = a(t + \sin t)$$
; $y = a(1 - \cos t)$ at $t = \pi$

9.
$$x = a \cos t$$
; $y = a \sin t$

10.
$$x = a \ln \left(\tan \left(\frac{\pi}{4} + \frac{\theta}{2} \right) \right)$$
; $y = a \sec(\theta)$

11.
$$x = a \cos^3 t$$
; $y = a \sin^3 t$

Self Study Topics:

Center of Curvature:

A point C on the normal at any point P of a curve distant ρ from it, is called the center of curvature at P.

Dept. of Math., BMSCE

Unit 1: Differential Calculus - 1

$$\bar{x} = x - \frac{(1+y_1^2)}{y_2}$$
 and $\bar{y} = y + \frac{(1+y_1^2)}{y_2}$

Equation of the circle of curvature:

$$\left(x - \overline{x}\right)^2 + \left(y - \overline{y}\right)^2 = \rho^2$$

- 1. Find the coordinates of the center of curvature at $(at^2, 2at)$ on the parabola $y^2 = 4ax$.
- 2. Find the coordinates of the center of curvature at any point of the parabola $y^2 = 4ax$.
- 3. Find the circle of curvature at the point (a/4, a/4) of the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$.
- 4. Find the circle of curvature at the point (3/2,3/2) of the curve $x^3 + y^3 = 3xy$.
- 5. Show that the circle of curvature at the origin for the curve $x + y = ax^2 + by^2 + ex^3$ is $(a+b)(x^2+y^2) = 2(x+y)$.

Evolute:

The locus of the center of curvature for a curve is called its evolute and the curve is called an involute.

- 1. Show that the equation of the evolute of the parabola $y^2 = 4ax$ is $27ay^2 = 4(x-2a)^3$.
- 2. Show that the evolute of the cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$ is another equal cycloid.
- 3. Show that the equation of the evolute of the parabola $x^2 = 4ay$ is $4(y-2a)^3 = 27ax^2$.
- 4. Show that the equation of the evolute of the curve $x = a(\cos t + \log \tan(t/2))$, $y = a \sin t$ is $y = a \cosh(x/a)$.
- 5. Show that the equation of the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is

$$(ax)^{2/3} + (by)^{2/3} = (a^2 - b^2)^{2/3}$$
.

- 6. Find the evolute of the following:
 - (i) Ellipse: $x = a \cos \theta$, $y = b \sin \theta$
 - (ii) Cycloid: $x = a(t + \sin t)$, $y = a(1 \cos t)$
 - (iii) $x = a\cos^3 t$, $y = a\sin^3 t$
