
Course – Analysis and Design of
Algorithms

Course Instructor

Dr. Umadevi V

Department of CSE, BMSCE
Webpage:https://sites.google.com/site/drvumadevi/

12 September 2019 CSE, BMSCE 1

Unit 1: Introduction to Algorithms

- Fundamentals of Algorithmic Problem Solving
- Space and Time Complexity
- Order of Growth
- Asymptotic Notations

12 September 2019 CSE, BMSCE 2

Algorithm

 An algorithm is a sequence of unambiguous
instructions for solving a computational
problem, i.e., for obtaining a required output
for any legitimate input in a finite amount of
time.

12 September 2019 CSE, BMSCE 3

Problem

Algorithm

“computer”Input Output

Program

Examples of Algorithms

Computing Greatest Common Divisor of Two
non-negative, not-both zero Integers

 gcd(m, n): the largest integer that divides both
m and n

 First try - Euclid’s Algorithm:

 Idea: gcd(m, n) = gcd(n, m mod n)

9/12/2019 4

Greatest Common Divisor (Euclid’s
Algorithm), gcd(m, n)

 Step 1: If n = 0, return value of m as
the answer and stop; otherwise,
proceed to Step 2.

 Step 2: Divide m by n and assign the
value of the remainder to r.

 Step 3: Assign the value of n to m
and the value of r to n. Go to Step 1.

9/12/2019 5

Pseudocode for (Euclid’s Algorithm),
gcd(m, n)

ALGORITHM Euclid(m, n)

// Computes gcd(m, n) by Euclid’s algorithm

// Input: Two nonnegative, not-both-zero integers m and n

//Output: Greatest common divisor of m and n

while n ≠ 0 do

r = m mod n

m = n

n = r

return m

9/12/2019 6

Question:
GCD(36,48) how many division
Operations are required to compute
GCD using Euclid algorithm ?

Second try: Middle-school procedure, gcd(m, n)

 Step 1: Find prime factors of m.

 Step 2: Find prime factors of n.

 Step 3: Identify all common prime factors of
m and n

 Step 4: Compute product of all common

factors and return product as the answer.

9/12/2019 7

Question:
GCD(36,48) how many division
Operations are required to compute
GCD using Middle-School procedure ?

Third try: Consecutive Integer Checking,
gcd(m, n)

 Step 1: Assign the value of min{m, n} to q.

 Step 2: Divide m by q. If the remainder is 0,
go to Step 3; otherwise, go to Step 4.

 Step 3: Divide n by q. If the remainder is 0,
return the value of q as the answer and stop;
otherwise, proceed to Step 4.

 Step 4: Decrease the value of q by 1. Go to
Step 2.

9/12/2019 8

Question:
Try computing GCD(36,48) using
Consecutive Integer
Checking method ?

What can we learn from the three
examples of gcd(m, n) ?

 Each step must be basic and unambiguous

 Same algorithm, but different
representations (different pseudocodes)

 Same problem, but different algorithms,
based on different ideas and having
dramatically different speeds.

 gcd(31415, 14142) = 1; Euclid takes ~0.08 ms
whereas Consecutive Integer Checking takes
~0.55 ms, about 7 times speedier

9/12/2019 9

Method 1: Greatest Common Divisor
(Euclid’s Algorithm), gcd(m, n)

 Step 1: If n = 0, return value of m as
the answer and stop; otherwise,
proceed to Step 2.

 Step 2: Divide m by n and assign the
value of the remainder to r.

 Step 3: Assign the value of n to m
and the value of r to n. Go to Step 1.

9/12/2019 10

Method 2: Consecutive Integer Checking,
gcd(m, n)

 Step 1: Assign the value of min{m, n} to q.

 Step 2: Divide m by q. If the remainder is 0,
go to Step 3; otherwise, go to Step 4.

 Step 3: Divide n by q. If the remainder is 0,
return the value of q as the answer and stop;
otherwise, proceed to Step 4.

 Step 4: Decrease the value of q by 1. Go to
Step 2.

9/12/2019 11

C++ Program - Analysis of the methods to find the GCD of two numbers

12 September 2019 CSE, BMSCE 12

#include<iostream.h>
#include<conio.h>
#include<time.h>

long int euclid(long int m,long int n)
{

clock_t start,end;
start=clock();
long int r;
while(n!=0)
{

r=m%n;
m=n;
n=r;

}
end=clock();
cout<<endl<<"Time

taken:"<<(end-start)/CLK_TCK<<" sec";
return m;

}

C++ Program - Analysis of the methods to find the GCD of two numbers

12 September 2019 CSE, BMSCE 13

long int con(long int m,long int n)
{

clock_t start,end;
start=clock();
long int t,r,g;
if(m>n)
{ t=n; }
else
{ t=m; }

a:do
{

r=m%t;
if(r!=0)
t--;

} while(r!=0);

if(r==0)
{

r=n%t;
if(r==0)
g=t;
else
{
t--;
goto a;

}
}
end=clock();
cout<<"Time taken :"<<(end-

start)/CLK_TCK<<" sec";
return g;

} /*End of the function con*/

C++ Program - Analysis of the methods to find the GCD of two numbers

12 September 2019 CSE, BMSCE 14

void main()
{

long int x,y;
clrscr();

cout<<"\t\t\tANALYSIS OF THE TWO ALGORITHMS"<<endl<<endl;
cout<<"GCD - EUCLID'S ALG : "<<endl;
cout<<"enter two numbers:";
cin>>x>>y;
cout<<endl<<endl<<"GCD : "<<euclid(x,y);
cout<<endl<<endl<<"--";
cout<<endl<<endl<<"GCD - CONSECUTIVE INTEGER CHECKING ALG :
"<<endl<<endl;
cout<<endl<<endl<<"GCD : "<<con(x,y);
getch();

}

ANALYSIS OF THE TWO LGORITHMS

GCD - EUCLID'S ALG :

enter two numbers:7896543 345678

Time taken: 0.08 millisecond

GCD : 3

--

GCD - CONSECUTIVE INTEGER CHECKING ALG :

Time taken :0.55 millisecond

GCD : 3

12 September 2019 CSE, BMSCE 15

INFERENCE:

The euclid’s method takes less time than the consecutive integer

checking method and hence euclid’s method is better.

Fundamentals of Algorithmic Problem Solving

 Sequence of steps in the process of design and analysis
of algorithms

12 September 2019 CSE, BMSCE 16

Question

With the help of a flow chart, explain the
various steps of algorithm design and
analysis process.

12 September 2019 CSE, BMSCE 17

Fundamentals of Algorithmic Problem
Solving (Contd….)

 Understanding the problem

 Ask questions, do a few small
examples by hand, think about special
cases, etc.

 An input is an instance of the problem
the algorithm solves

 Specify exactly the set of instances the
algorithm needs to handle

 Example: gcd(m, n)

9/12/2019 18

 Decide on

 Exact vs. approximate solution

 Approximate algorithm: Cannot solve
exactly, e.g., extracting square roots,
solving nonlinear equations, etc.

 Appropriate Data Structure

9/12/2019 19

Fundamentals of Algorithmic Problem
Solving (Contd….)

 Design algorithm

 Prove correctness of the algorithm

 Yields required output for every
legitimate input in finite time

 E.g., Euclid’s: gcd(m, n) = gcd(n, m
mod n)

 Second integer gets smaller on every
iteration, because (m mod n) can be 0, 1,
…, n-1 thus less than n

 The algorithm terminates when the
second integer is 0

9/12/2019 20

Fundamentals of Algorithmic Problem
Solving (Contd….)

 Analyze algorithm

 Time efficiency: How fast it runs

 Space efficiency: How much extra
memory it uses

 Simplicity: Easier to understand,
usually contains fewer bugs,
sometimes simpler is more efficient,
but not always!

 Generality: Example, whether two
integers are relatively prime, use
gcd(m, n)

9/12/2019 21

Fundamentals of Algorithmic Problem
Solving (Contd….)

 Coding algorithm

 Write in a programming language for a
real machine

 Standard tricks:

 Compute loop invariant (which does not
change value in the loop) outside loop

 Replace expensive operation by cheap
ones

9/12/2019 22

Fundamentals of Algorithmic Problem
Solving (Contd….)

Discussion: Algorithms in your Life

What algorithms do you use in every day life? Do you think you could
write a program to make them more efficient?

What algorithms do you think are used by your favorite Games and
Apps?

Have you ever made an algorithm for a program? What did it do? Was
it correct and efficient?

12 September 2019 CSE, BMSCE 23

Test Your Analytical Skill

12 September 2019 CSE, BMSCE 24

Problem 1

There are n lockers in a hallway numbered
sequentially from 1 to n. Initially, all the locker
doors are closed. You make n passes by the lockers,
each time starting with locker #1. On the ith pass, i
= 1, 2, ..., n, you toggle the door of every ith
locker: if the door is closed, you open it, if it is
open, you close it. For example, after the first pass
every door is open; on the second pass you only
toggle the even-numbered lockers (#2, #4, ...) so
that after the second pass the even doors are closed
and the odd ones are opened; the third time
through you close the door of locker #3 (opened
from the first pass), open the door of locker #6
(closed from the second pass), and so on. After the
last pass, which locker doors are open and which are
closed? How many of them are open ?

Easy but inefficient

Better

Better

Problem 1

 Design an algorithm for swapping two 3 digit non-zero
integers n, m. Besides using arithmetic operations, your
algorithm should not use any temporary variable.

 Solution

1) use 2 variables (say) a & b
2) ask user to input values
3) read values
4) execute the Exclusive-Or (XOR) operation like this to
swap a and b:
a ^= b;
b ^= a;
a ^= b;
5) display the swapped values

Similarly you can try with Addition-Subtraction or
Multiplication-Divition
12 September 2019 CSE, BMSCE 29

Analysis of Algorithms

Space Complexity
Time Complexity

12 September 2019 CSE, BMSCE 30

Reasons to Analyze Algorithms

 Predict Performance

 Compare Algorithms

 Provide Guarantees

 Understand theoretical basis.

 Primary Practical Reason: Avoid Performance
Bugs

12 September 2019 CSE, BMSCE 31

Performance measure of the algorithm

Two kinds of efficiency:
Space Efficiency or Space Complexity
Time Efficiency or Time Complexity

12 September 2019 CSE, BMSCE 32

Two kinds of Algorithm Efficiency

 Analyzing the efficiency of an algorithm (or the
complexity of an algorithm) means establishing the
amount of computing resources needed to execute the
algorithm. There are two types of resources:

• Memory space. It means the amount of space used to
store all data processed by the algorithm.

• Running time. It means the time needed to execute all the
operations specified in the algorithm.

Space efficiency: Deals with the space required by the
algorithm

Time efficiency: It indicates how fast an algorithm runs.

12 September 2019 CSE, BMSCE 33

What is Space complexity?

For any algorithm, memory is required for the following purposes...

 Memory required to store program instructions

 Memory required to store constant values

 Memory required to store variable values

Space complexity of an algorithm can be defined as follows...

Total amount of computer memory required by an algorithm to
complete its execution is called as space complexity of that
algorithm

12 September 2019 CSE, BMSCE 34

What is Space complexity?

For any algorithm, memory is required for the following purposes...

 Memory required to store program instructions

 Memory required to store constant values

 Memory required to store variable values

Space complexity of an algorithm can be defined as follows...

Total amount of computer memory required by an algorithm to
complete its execution is called as space complexity of that
algorithm

Generally, when a program is under execution it uses the computer
memory for THREE reasons. They are as follows...

 Instruction Space: It is the amount of memory used to store
compiled version of instructions.

 Data Space: It is the amount of memory used to store all the
variables and constants.

 Environmental Stack: It is the amount of memory used to store
information of partially executed functions at the time of function call.

12 September 2019 CSE, BMSCE 35

Space Complexity

Instruction space + Data space + Stack
space

12 September 2019 CSE, BMSCE 36

Calculating Space Complexity

To calculate the space complexity, we must know the
memory required to store different datatype values
(according to the compiler). For example, the C
Programming Language compiler requires the following...

 1 byte to store Character value,

 2 bytes to store Integer value,

 4 bytes to store Floating Point value,

 6 or 8 bytes to store double value

12 September 2019 CSE, BMSCE 37

Calculating Space Complexity

Example, Calculating the Data Space required for the following
given code

int square(int a)

{

return a*a;

}

12 September 2019 CSE, BMSCE 38

Calculating Space Complexity

Example, Calculating the Data Space required for the following
given code

int square(int a)

{

return a*a;

}

12 September 2019 CSE, BMSCE 39

Data Space
Required

For int a 2 Bytes

For returning a*a 2 Bytes

Total 4 Bytes

Calculating Space Complexity

Example:

int square(int a)

{

return a*a;

}

Data Space Required:

 This code requires 2 bytes of memory to store variable 'a' and
another 2 bytes of memory is used for return value.

 That means, totally it requires 4 bytes of memory to
complete its execution. And this 4 bytes of memory is fixed for
any input value of 'a'. This space complexity is said to
be Constant Space Complexity.

 If any algorithm requires a fixed amount of space for all
input values then that space complexity is said to be Constant
Space Complexity

12 September 2019 CSE, BMSCE 40

Data Space
Required

For int a 2 Bytes

For returning a*a 2 Bytes

Total 4 Bytes

Calculating Space Complexity

Example, Calculating the Data Space required for the following
given code

int sum(int A[], int n) {

int sum = 0, i;

for(i = 0; i < n; i++)

sum = sum + A[i];

return sum;

}

12 September 2019 CSE, BMSCE 41

Calculating Space Complexity

Example, Calculating the Data Space required for the following
given code

int sum(int A[], int n) {

int sum = 0, i;

for(i = 0; i < n; i++)

sum = sum + A[i];

return sum;

}

12 September 2019 CSE, BMSCE 42

Data Space
Required

For parameter int A[] n *2 Bytes

For parameter n 2 Bytes

For local variable sum 2 Bytes

For local variable i 2 Bytes

Total 2n+6 Bytes

Calculating Space Complexity

int sum(int A[], int n) {

int sum = 0, i;

for(i = 0; i < n; i++)

sum = sum + A[i];

return sum; }

Data Space Required:

 'n*2' bytes of memory to store array variable 'a[]'
2 bytes of memory for integer parameter 'n'
4 bytes of memory for local integer variables 'sum' and 'i' (2
bytes each)

 That means, totally it requires '2n+6' bytes of memory to complete
its execution. Here, the amount of memory depends on the input value
of 'n'. This space complexity is said to be Linear Space Complexity.

If the amount of space required by an algorithm is increased with
the increase of input value, then that space complexity is said to be
Linear Space Complexity

12 September 2019 CSE, BMSCE 43

Test your Knowledge

 Find Data Space required for the
following code:

int sum(int x, int y, int z) {

int r = x + y + z;

return r;

}

12 September 2019 CSE, BMSCE 44

Is the Space Complexity of this code is
―Constant Space Complexity”
or ―Linear Space Complexity” ?

Test your Knowledge

 Find Data Space required for the
following code:

void matrixAdd(int a[], int b[], int c[], int n) {

for (int i = 0; i < n; ++i) {

c[i] = a[i] + b[j]

}

}

12 September 2019 CSE, BMSCE 45

Is the Space Complexity of this code is
―Constant Space Complexity”
or ―Linear Space Complexity” ?

Performance measure of the algorithm

Two kinds of efficiency:
Space Efficiency or Space Complexity
Time Efficiency or Time Complexity

12 September 2019 CSE, BMSCE 46

What is Time complexity?

 Every algorithm requires some amount of computer time to
execute its instruction to perform the task. This computer time
required is called time complexity.

Time complexity of an algorithm can be defined as follows...

 The time complexity of an algorithm is the total amount
of time required by an algorithm to complete its
execution.

12 September 2019 CSE, BMSCE 47

What is Time complexity?

 Every algorithm requires some amount of computer time to
execute its instruction to perform the task. This computer time
required is called time complexity.

Time complexity of an algorithm can be defined as follows...

 The time complexity of an algorithm is the total amount
of time required by an algorithm to complete its
execution.

Generally, running time of an algorithm depends upon the
following...

 Whether it is running on Single processor machine or Multi processor
machine.

 Whether it is a 32 bit machine or 64 bit machine

 Read and Write speed of the machine.

 The time it takes to
perform Arithmetic operations, logical operations, return value
and assignment operations etc.,

 Input data

12 September 2019 CSE, BMSCE 48

Calculating Time Complexity

 When we calculate time complexity of an algorithm, we
consider only input data and ignore the remaining
things, as they are machine dependent.

Example, Calculating the Time Complexity required for the
following given code

int sum(int a, int b) {

return a+b;

}

12 September 2019 CSE, BMSCE 49

Time
Required

To calculate
a+b

1 Unit of time

For returning
a+b

1 Unit of time

Total 2 Units of
time

Calculating Time Complexity

 When we calculate time complexity of an algorithm, we
consider only input data and ignore the remaining
things, as they are machine dependent.

Example, Calculating the Time Complexity required for the
following given code

int sum(int a, int b) {

return a+b;

}

12 September 2019 CSE, BMSCE 50

Time Required *

To calculate
a+b

1 Unit of time 1 Secs

For returning
a+b

1 Unit of time 1 Secs

Total 2 Units of time 2 Secs

*Hypothetical approximation
of time

Calculating Time Complexity

 When we calculate time complexity of an algorithm, we
consider only input data and ignore the remaining
things, as they are machine dependent.

Example:

int sum(int a, int b) {

return a+b; }

This Code requires 1 unit of time to calculate a+b and 1 unit
of time to return the value. That means, totally it takes 2
units of time to complete its execution. And it does not
change based on the input values of a and b. That means for
all input values, it requires same amount of time i.e. 2 units.

If any program requires fixed amount of time for all input
values then its time complexity is said to be Constant Time
Complexity.

12 September 2019 CSE, BMSCE 51

Calculating Time Complexity

Example, Calculate Time complexity for the following given code:

int fun(int A[], int n) {

int sum = 0, i;

for(i = 0; i < n; i++)

sum = sum + A[i];

return sum;

}

12 September 2019 CSE, BMSCE 52

Calculating Time Complexity

int sumOfList(int A[], int n) {

int sum = 0, i;

for(i = 0; i < n; i++) sum = sum + A[i];

return sum; }

For the above code, time complexity can be calculated as follows...

12 September 2019 CSE, BMSCE 53

Cost or
Number Operations in the

Statement

int sum = 0, i; 1
(sum=0 initializing sum with

zero)

for(i = 0; i < n; i++)

sum = sum + A[i];

return sum;

Calculating Time Complexity

int sumOfList(int A[], int n) {

int sum = 0, i;

for(i = 0; i < n; i++) sum = sum + A[i];

return sum; }

For the above code, time complexity can be calculated as follows...

12 September 2019 CSE, BMSCE 54

Cost or
Number Operations in the

Statement

int sum = 0, i; 1
(initializing zero to sum)

for(i = 0; i < n; i++) 1 + 1 + 1
(i=0, i<n, i++)

sum = sum + A[i];

return sum;

Calculating Time Complexity

int sumOfList(int A[], int n) {

int sum = 0, i;

for(i = 0; i < n; i++) sum = sum + A[i];

return sum; }

For the above code, time complexity can be calculated as follows...

12 September 2019 CSE, BMSCE 55

Cost or
Number Operations in the

Statement

int sum = 0, i; 1
(initializing zero to sum)

for(i = 0; i < n; i++) 1+1+1
(i=0, i<n, i++)

sum = sum + A[i]; 1+ 1
(Addition and Assigning result

to sum)

return sum; 1
(returning sum)

Calculating Time Complexity

int sumOfList(int A[], int n) {

int sum = 0, i;

for(i = 0; i < n; i++) sum = sum + A[i];

return sum; }

For the above code, time complexity can be calculated as follows...

12 September 2019 CSE, BMSCE 56

Cost or
Number Operations in the

Statement

Repetitions or
No. of Times of
Execution

int sum = 0, i; 1 1

for(i = 0; i < n; i++) 1+1+1

sum = sum + A[i]; 1+ 1

return sum; 1

Calculating Time Complexity

int sumOfList(int A[], int n) {

int sum = 0, i;

for(i = 0; i < n; i++) sum = sum + A[i];

return sum; }

For the above code, time complexity can be calculated as follows...

12 September 2019 CSE, BMSCE 57

Cost or
Number Operations in the

Statement

Repetitions or
No. of Times of
Execution

int sum = 0, i; 1 1

for(i = 0; i < n; i++) 1+1+1 1+(n+1)+n
(i=0 gets executed one
time, i<n gets executed
(n+1) times, i++ gets

executed n times

sum = sum + A[i]; 1+ 1

return sum; 1

Total

Calculating Time Complexity

int sumOfList(int A[], int n) {

int sum = 0, i;

for(i = 0; i < n; i++) sum = sum + A[i];

return sum; }

For the above code, time complexity can be calculated as follows...

12 September 2019 CSE, BMSCE 58

Cost or
Number Operations in the

Statement

Repetitions or
No. of Times of
Execution

int sum = 0, i; 1 1

for(i = 0; i < n; i++) 1+1+1 1+(n+1)+n

sum = sum + A[i]; 1+ 1 n + n

return sum; 1 1

Calculating Time Complexity

int sumOfList(int A[], int n) {

int sum = 0, i;

for(i = 0; i < n; i++) sum = sum + A[i];

return sum; }

For the above code, time complexity can be calculated as follows...

12 September 2019 CSE, BMSCE 59

Cost or
Number Operations in the

Statement

Repetitions or
No. of Times of
Execution

Total

int sum = 0, i; 1 1 1

for(i = 0; i < n; i++) 1+1+1 1+(n+1)+n 2n+2

sum = sum + A[i]; 1+ 1 n + n 2n

return sum; 1 1 1

Running Time T(n) 4n+4

Calculating Time Complexity (Contd….

 For the calculation done in previous slide
Cost is the amount of computer time required for a single operation in
each line.
Repetition is the amount of computer time required by each operation
for all its repetitions.
Total is the amount of computer time required by each operation to
execute.

So above code requires '4n+4' Units of computer time to complete
the task. Here the exact time is not fixed. And it changes based on
the n value. If we increase the n value then the time required also
increases linearly.

Totally it takes '4n+4' units of time to complete its execution and it
is Linear Time Complexity.

 If the amount of time required by an algorithm is increased with the
increase of input value then that time complexity is said to be Linear
Time Complexity

12 September 2019 CSE, BMSCE 60

Test Your Knowledge

Find Time Complexity of

the given Algorithm

12 September 2019 CSE, BMSCE 61

Test Your Knowledge

Find Time Complexity of

the given Algorithm

12 September 2019 CSE, BMSCE 62

Cost or
Number Operations
in the Statement

Repetitions or
No. of Times of
Execution

Total

1 1 1 1

2 1 1 1

3 1 n+1 n+1

4 1+1 n+n 2n

5 1+1 n+n 2n

7 1 1 1

Running Time T(n) 5n+4

Test Your Knowledge

 Find Time Complexity of the following Algorithm

12 September 2019 CSE, BMSCE 63

int product(int a[m][n], int b[n][p]){
for(i=1;i<=m;i++){

for(j=1;j<=p;j++){
c[i][j]=0;

for(k=1;k<=n;k++){
c[i][j]=c[i][j]+a[i][k]*b[k][j]

}

}

}
return c
}

Test Your Knowledge

12 September 2019 CSE, BMSCE 64

Cost or
Number Operations
in the Statement

Repetitions or
No. of Times of
Execution

Total

1 1+1+1 1+(m+1)+m 2m+2 2m+2

2 1+1+1 (1+(p+1)+p)m (2p+2)m 2pm+2m

3 1 (p)m pm pm

4 1+1+1 ((1+(n+1)+n)p)m ((2n+2)p)
m

2npm+
2pm

5 1+1+1 ((n+n+n)p)m ((3n)p)m 3npm

9 1 1 1 1

Running Time T(n) 5npm+
5pm+4m
+3

Find Time Complexity for the
given Algorithm

Given two algorithms for a task, how do we find out which
one is better?

One naive way of doing this is – implement both the algorithms
and run the two programs on your computer for different inputs
and see which one takes less time. There are many problems with
this approach for analysis of algorithms.
1) It might be possible that for some inputs, first algorithm
performs better than the second. And for some inputs second
performs better.
2) It might also be possible that for some inputs, first algorithm
perform better on one machine and the second works better on
other machine for some other inputs.

12 September 2019 CSE, BMSCE 65

Problem

Algorithm1 Algorithm2

Question

What is the meaning of the notation T(n)
w.r.t analysis of algorithms ?

12 September 2019 CSE, BMSCE 66

Answer

 TA(n) = Maximum time taken (or
Number of Machine operations needed)
by the algorithm A to solve input of
size n.

 Input size refers to number of values in
the data set. Example: Say ten lakh
Aadhar card numbers has to be sorted
then input size n refers to 10,00,000

 TA(n) is the measure of Goodness of
Algorithm A

12 September 2019 CSE, BMSCE 67

T(n)

Expression we get for T(n) may not be of
great consequence for real Computers
/Computations because it various from one
machine architecture to another machine
architecture

12 September 2019 CSE, BMSCE 68

Example: Program 1

#include <stdio.h>

main(){

int n,temp;

scanf(―%d‖,&n)

temp=10*30;

}

12 September 2019 CSE, BMSCE 69

Example: Program 1

#include <stdio.h>

main(){

int n,temp;

scanf(―%d‖,&n)

temp=10*30;

}

12 September 2019 CSE, BMSCE 70

Cost or
Number

Operations in the
Statement

Repetitions or
No. of Times
of Execution

Total

temp=10*30; 1+1 1+1 2

Running Time T(n) 2

Example: Program 1

#include <stdio.h>

main(){

int n,temp;

scanf(―%d‖,&n)

temp=10*30;

}

12 September 2019 CSE, BMSCE 71

Cost or
Number

Operations in the
Statement

Repetitions or
No. of Times
of Execution

Total

temp=10*30; 1+1 1+1 2

Running Time T(n) 2

Running Time T(n)=2

Constant Time

Example: Program 2

#include <stdio.h>

main(){

int i, n,temp;

scanf(―%d‖,&n)

for(i=0; i < n; i++) {

temp=10*30;

}

}

12 September 2019 CSE, BMSCE 72

Example: Program 2

#include <stdio.h>

main(){

int i, n,temp;

scanf(―%d‖,&n)

for(i=0; i < n; i++) {

temp=10*30;

}

}

12 September 2019 CSE, BMSCE 73

Cost or
Number of

Operations in the
Statement

Repetitions or
No. of Times of
Execution

Total

for(i=0; i < n; i++) 1+1+1 1+(n+1)+n 2n+2

temp=10*30; 1+1 n+n 2n

Running Time T(n) 4n+2

T(n) for different values of n

#include <stdio.h>

main(){

int i, n,temp;

scanf(―%d‖,&n)

for(i=0; i < n; i++) {

temp=10*30;

} }

12 September 2019 CSE, BMSCE 74

n T(n)=4n+2 On Computer 1
Time taken(in Secs)

On Computer 2 Time
taken (in Secs)

10 42 ?? ??

20 82 ?? ??

1000 4002 ?? ??

50000 20002 ?? ??

Running Time T(n)=4n+2

T(n) for different values of n

#include <stdio.h>

#include <time.h>

main(){

long int n,i; int temp;

clock_t start, end;

scanf(―%ld‖,&n)

start=clock();

for(i=0; i < n; i++) {

temp=10*30;

}

end=clock();

printf(―Time take %f in Secs‖,(((double)(end-start))/CLOCKS_PER_SEC));

}

12 September 2019 CSE, BMSCE 75

Running Time T(n)=4n+2

T(n) for different values of n

#include <stdio.h>

main(){

int i, n,temp;

scanf(―%d‖,&n)

for(i=0; i < n; i++) {

temp=10*30;

} }

12 September 2019 CSE, BMSCE 76

n T(n)=4n+2 On Computer 1
Time taken(in Secs)

On Computer 2 Time
taken (in Secs)

10 42 0.000002

20 82 0.000003

1000 4002 0.000010

50000 200002 0.000395

T(n) for different values of n

#include <stdio.h>

main(){

int i, n,temp;

scanf(―%d‖,&n)

for(i=0; i < n; i++) {

temp=10*30;

} }

12 September 2019 CSE, BMSCE 77

n T(n)=4n+2 On Computer 1
Time taken(in Secs)

On Computer 2 Time
taken (in Secs)

10 42 0.000002 0.000002

20 82 0.000003 0.000002

1000 4002 0.000010 0.000006

50000 200002 0.000395 0.000252

T(n) for different values of n

#include <stdio.h>

main(){

int i, n,temp;

scanf(―%d‖,&n)

for(i=0; i < n; i++) {

temp=10*30;

} }

12 September 2019 CSE, BMSCE 78

n T(n)=4n+2 On Computer 1
Time taken(in Secs)

On Computer 2 Time
taken (in Secs)

10 42 0.000002 0.000002

20 82 0.000003 0.000002

1000 4002 0.000010 0.000006

50000 200002 0.000395 0.000252

Running Time T(n)=4n+2

Linear Time

Example: Program 3

#include <stdio.h>

main(){ int i,j,n,temp;

scanf(―%d‖, &n)

for(i=0; i < n; i++) {

for(j=0; j < n;j++) {

temp=10*30;

} } }

12 September 2019 CSE, BMSCE 79

Cost or
Number

Operations in the
Statement

Repetitions or
No. of Times of
Execution

Total

for(i=0; i < n; i++) 1+1+1 1+(n+1)+n 2n+2

for(j=0; j < n; j++) 1+1+1 (1+(n+1)+n)n 2n2+2n

temp=10*30; 1+1 (n+n)n 2n2

Running Time T(n) 4n2+4n
+2

T(n) for different values of n

#include <stdio.h>

main(){ int i,j,n,temp;

scanf(―%d‖, &n)

for(i=0; i < n; i++) {

for(j=0; j < n;j++) {

temp=10*30;

} } }

12 September 2019 CSE, BMSCE 80

n T(n)=4n2+4
n+2

On Computer 1
Time taken(in Secs)

On Computer 2 Time
taken (in Secs)

10 442 0.000003 0.000002

20 1682 0.000010 0.000007

1000 4004002 0.008255 0.005062

50000 10000200002 5.766243 4.765878

Running Time T(n)=4n2+4n+2

Quadratic Time

Rate of Growth or Order of Growth

Order of growth in algorithm means how the time for computation
increases when you increase the input size. It really matters when your
input size is very large.

Order of growth provide only a crude description of the behavior of a process.

Algorithms analysis is all about understanding growth rates. That is as the
amount of data gets bigger, how much more resource will my algorithm
require? Typically, we describe the resource growth rate of a piece of code in
terms of a function.

12 September 2019 CSE, BMSCE 81

Order of Growth: Linear vs Quadratic

12 September 2019 CSE, BMSCE 82

n T(n)=4n+2 T(n)=4n^2+4n+2

1 6 10

2 10 26

3 14 50

4 18 82

5 22 122

6 26 170

7 30 226

8 34 290

9 38 362

10 42 442

Example

Order of Growth: Linear vs Quadratic

12 September 2019 CSE, BMSCE 83

n T(n)=4n+2 T(n)=4n^2+4n+2

1 6 10

2 10 26

3 14 50

4 18 82

5 22 122

6 26 170

7 30 226

8 34 290

9 38 362

10 42 442

Example

Example: Program 4

#include <stdio.h>

main(){ int i,j,k, n,temp;

scanf(―%d‖, &n)

for(i=0; i < n; i++) {

for(j=0; j < n;j++) {

for(k=0; k < n;k++) {

temp=10*30;

} } } }

12 September 2019 CSE, BMSCE 84

Example: Program 4

#include <stdio.h>

main(){ int i,j,k, n,temp;

scanf(―%d‖, &n)

for(i=0; i < n; i++) {

for(j=0; j < n;j++) {

for(k=0; k < n;k++) {

temp=10*30;

} } } }

12 September 2019 CSE, BMSCE 85

Cost or
Number

Operations in the
Statement

Repetitions or
No. of Times of
Execution

Total

for(i=0; i < n; i++) 1+1+1 1+(n+1)+n 2n+2

for(j=0; j < n; j++) 1+1+1 (1+(n+1)+n)n 2n2+2n

for(k=0; k < n;k++) 1+1+1 ((1+(n+1)+n)n)n 2n3+2n2

temp=10*30; 1+1 ((n+n)n)n 2n3

Running Time T(n) 4n3+4n2

+4n+2

Running Time T(n)=4n3+4n2+4n+2

Cubic Time

Order of Growth (or Rate of Growth):
Linear vs Quadratic vs Cubic

12 September 2019 CSE, BMSCE 86

Example

Interpretation of T(n)

 What is important is ―form (or shape) of
T(n)‖ i.e.., whether T(n) is Linear, Quadratic,
Cubic..etc.

 Using the expression of T(n) we may not be
able to give exact estimate but we can
interpret the behavior of the algorithm when
implemented on any computer.

 Analyzing the behavior of the algorithm for
LARGE n is important.(i.e., as n tends to
infinity n -> ∞)

12 September 2019 CSE, BMSCE 87

Question

Consider, you are given with 10 Aadhaar card numbers and
you are asked to sort this numbers in Ascending order.
Assume Aadhaar card numbers are available in an Notepad
file stored on computer memory. Which of the following
strategy you will use:

a. Sort by hand (or mentally) and update the file

b. Sort by writing a program

12 September 2019 CSE, BMSCE 88

Question

Consider, you are given with 1000 Aadhaar card numbers
and you are asked to sort this numbers in Ascending order.
Assume Aadhaar card numbers are available in an database
file stored on computer memory. Which of the following
strategy you will use:

a. Sort by hand (or mentally) and update the file

b. Sort by writing a program

12 September 2019 CSE, BMSCE 89

Question

Consider, you are given with 10,000 Aadhaar card numbers
and you are asked to sort this numbers in Ascending order.
Assume, Aadhaar card numbers are available in an database
file stored on computer memory.

You are given with two sorting algorithms, say the

efficiency of Algorithm1 is TA1(n)=4n+2 and

efficiency of Algorithm2 is TA2(n)=4n2+2

Which of the following strategy you will use:

a. Write a program to sort by implementing Algorithm1

b. Write a program to sort by implementing Algorithm2

12 September 2019 CSE, BMSCE 90

Answer

Consider, you are given with 10,000 Aadhaar card numbers and you are asked to this numbers in
Ascending order. Assume, Aadhaar card numbers are available in an database file stored on
computer memory.

You are given with two sorting algorithms, say the

efficiency of Algorithm1 is TA1(n)=4n+2 and

efficiency of Algorithm2 is TA2(n)=4n2+2

Which of the following strategy you will use:

a. Write a program to sort by implementing Algorithm1

b. Write a program to sort by implementing Algorithm2

12 September 2019 CSE, BMSCE 91

We can choose eitherAlgo1 or
Algo2 if it is one time sorting.
And also on modern computer
Sorting ten thousand numbers
Will not take much time because it
will be done in fraction of seconds

Question

Consider, you are given with 10,00,000 Aadhaar card
numbers and you are asked sort to this numbers in
Ascending order. Assume, Aadhaar card numbers are
available in an database file stored on computer memory.

You are given with two sorting algorithms, say the

efficiency of Algorithm1 is TA1(n)=104n and

efficiency of Algorithm2 is TA2(n)=n2

Which of the following strategy you will use:

a. Write a program to sort by implementing Algorithm1

b. Write a program to sort by implementing Algorithm2

12 September 2019 CSE, BMSCE 92

Answer

Consider, you are given with 10,00,000 Aadhaar card numbers and you are asked sort
to this numbers in Ascending order. Assume, Aadhaar card numbers are available in
an database file stored on computer memory.

You are given with two sorting algorithms, say the

efficiency of Algorithm1 is TA1(n)=104n and

efficiency of Algorithm2 is TA2(n)=n2

Which of the following strategy you will use:

a. Write a program to sort by implementing Algorithm1

b. Write a program to sort by implementing Algorithm2

12 September 2019 CSE, BMSCE 93

For n<=104 ,104n > n2 Algo2 is better
But for n> 104 Algo1 is better

Question

12 September 2019 CSE, BMSCE 94

Problem

Algorithm1 Algorithm2

T(n)=500n+3 T(n)=2n2+3n+1

Which algorithm to use ?

Question

12 September 2019 CSE, BMSCE 95

Problem

Algorithm1 Algorithm2

T(n)=10n3+5n2+17 T(n)=2n3+3n+79

Which algorithm to use ?

Question

12 September 2019 CSE, BMSCE 96

Problem

Algorithm1 Algorithm2

T(n)=10n3+5n2+17 T(n)=2n3+3n+79

Which algorithm to use ?

Answer:
The above two time complexities are tedious to be judged.
Hence we will go with approximating the time complexities i.e.,
finding Out the class to which the algorithm belongs because as n tends
to infinity (n -> ∞) i.e., when n takes large values the value of (5n2+17)
and the value of (3n+79) will go out. Therefore we will be worrying
about 10n3 and 2n3

Example

Consider T(n)= 6n2 + 100n + 300

12 September 2019 CSE, BMSCE 97

Example

Consider T(n)= 6n2 + 100n + 300

12 September 2019 CSE, BMSCE 98

The 6n2 term becomes larger than the remaining terms,
100n + 300, once n becomes large enough, 20 in this case.

Example

Consider T(n)= 0.6n2 + 1000n + 3000

12 September 2019 CSE, BMSCE 99

Example

Consider T(n)= 0.6n2 + 1000n + 3000

12 September 2019 CSE, BMSCE 100

The 0.6n2 term becomes larger than the remaining terms,
1000n + 3000, once n becomes large enough, 1700 in this case.

Explanation

For example, suppose that an algorithm, running on an input of
size n, takes 6n2 + 100n + 300 machine instructions.
The 6n2 term becomes larger than the remaining terms, 100n +
300, once n becomes large enough, 20 in this case. Here's a chart
showing values of 6n2 and 100n + 300 for values of n from 0 to
100:

12 September 2019 CSE, BMSCE 101

Explanation

12 September 2019 CSE, BMSCE 102

What is a Time Complexity/Order of Growth?

 Time Complexity/Order of Growth
defines the amount of time taken by
any program with respect to the size
of the input.

 Time Complexity specifies how the
program would behave as the order
of size of input is increased. So, Time
Complexity is just a function of size of
its input.

12 September 2019 CSE, BMSCE 103

Some of basic and most common time
complexities such as:

 Constant Time Complexity: Constant running time

 Linear Time Complexity (n) : Linear running time

 Logarithmic Time Complexity (log n) : Logarithmic
running time

 Log-Linear Time Complexity (n log n) : Log-­linear
running time

 Polynomial Time Complexity (n^c) : Polynomial running
time (c is a constant)

 Exponential Time Complexity (c^n) : Exponential
running time (c is a constant being raised to a power
based on size of input)

12 September 2019 CSE, BMSCE 104

What is Constant Time Complexity?

 The code that runs in fixed amount of time or has fixed number of
steps of execution no matter what is the size of input has constant
time complexity. For instance, let’s try and derive a Time Complexity
for following code:

12 September 2019 CSE, BMSCE 105

What is Constant Time Complexity?

 The code that runs in fixed amount of time or has fixed number of
steps of execution no matter what is the size of input has constant
time complexity. For instance, let’s try and derive a Time Complexity
for following code:

def my_sum(a, b):

return a+b

If we call this function by my_sum(2, 5) it will return 7 in 1 step. That
single step of computation is summing a and b. No matter how large is the
size of input i.e. a and b is, it will always return the sum in 1 step.

So, the Time Complexity of the above code is a Constant Time Complexity.

12 September 2019 CSE, BMSCE 106

What is Linear Time Complexity?

The code whose Time Complexity or Order of Growth increases linearly as
the size of the input is increased has Linear Time Complexity.

For instance, let’s see this code which returns the sum of a list.

12 September 2019 CSE, BMSCE 107

What is Linear Time Complexity?

The code whose Time Complexity or Order of Growth increases linearly as
the size of the input is increased has Linear Time Complexity.

For instance, let’s see this code which returns the sum of a list.

for(i=0; i < n; i++)

temp=10*30;

12 September 2019 CSE, BMSCE 108

T(n)= 4n+2

What is Logarithmic Time Complexity?

 When the size of input is N but the number of steps to execute
the code is log(N), such a code is said to be executing in
Logarithmic Time. This definition is quite vague but if we take
an example, it will be quite clear.

12 September 2019 CSE, BMSCE 109

What is Logarithmic Time Complexity?

 When the size of input is N but the number of steps to execute
the code is log(N), such a code is said to be executing in
Logarithmic Time. This definition is quite vague but if we take
an example, it will be quite clear.

 Let’s say we have a very large number which is a power of 2
i.e. we have 2^x. We want to find x. For eg: 64 = 2^6. So x is
6.

pow(n){

x = 0

while (n > 1){

n = n/2

x = x+1}

return x }

12 September 2019 CSE, BMSCE 110

T(n) = log(n)

What is Log-Linear Time Complexity?

 When we call a Logarithmic Time Algorithm inside a loop, it would
result into a Log-Linear Time Complexity program.

 For example: Let’s say we have long sorted list of size N. And we have
Q numbers, for each of those Q numbers we have to find the index of
it in the given list.

for i in Qlist:

print binary_search(x, search_list) #This statement is

#executed Q times

Analyzing above code, we know that the call to Binary Search function
takes (log N) times. We are calling it Q times. Hence the overall time
complexity is Q(log N).

12 September 2019 CSE, BMSCE 111

Log Linear Time Complexity

What is Polynomial Time Complexity?

When the computation time increases as function of N raised to some
power, N being the size of input. Such a code has Polynomial Time
Complexity.

For example, let’s say we have a list of size N and we have nested loops on
that list.

for i in N:

for j in N:

Some processing

In the above code, the processing part is executed N*N times i.e. N^2
times. Such a code has (N^2) time complexity.

12 September 2019 CSE, BMSCE 112

Quadratic Time Complexity

What is Exponential Time Complexity?

 When the computation time of a code increases as function of X^N, N
being the size of input. Such a code has Polynomial Time Complexity.

 For example, following recursive code to find Nth fibonacci number has
Time Complexity as (2^N)

def F(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return F(n-1) + F(n-2) # For every call to F, we make 2 more calls to
F itself

12 September 2019 CSE, BMSCE 113

Exponential Time Complexity

-We consider only leading term in the expression T(n), since
lower-order terms are relatively insignificant for large n.

-We are moving from Actual cost to Growth of Cost (or
Rate of Growth).
-We are interested to know what is the term that dominates so
that if we arbitrarily keep on increasing n that is the term
which primarily decide how the computing time will grow.

12 September 2019 CSE, BMSCE 114

Order of Growth

Measuring the performance of an algorithm in
relation with the input size n is called Order of
growth or Rate of Growth

12 September 2019 CSE, BMSCE 115

Order of growth for varying input size of n

Order of Growth

Measuring the performance of an algorithm in relation with the input size n is called
order of growth . Some of the popular order which we will see is:-

 Order 1 : Constant.

 Order log(n) : Logarithmic

 Order (n) : linear

 Order nlog(n): log linear, occurs very often

 order (n ^ C) : polynomial

 order (C ^ n) : exponential

12 September 2019 CSE, BMSCE 116

Order of growth for varying input size of n

Order of Growth

Measuring the performance of an algorithm in relation with the input size n is called
order of growth

Some of the popular order which we will see is:-

 Order 1 : Constant.

 Order log(n) : Lograthimic

 Order (n) : liner

 Order nlog(n): log liner, occurs very often

 order (n ^ C) : polynomial

 order (C ^ n) : exponential

12 September 2019 CSE, BMSCE 117

Order of growth for varying input size of n

Quiz

 Which kind of growth best characterizes each of these
functions?

12 September 2019 CSE, BMSCE 118

Answer

 Which kind of growth best characterizes each of these
functions?

12 September 2019 CSE, BMSCE 119

Quiz

 Rank these functions according to their growth, from slowest
growing (at the top) to fastest growing (at the bottom).

12 September 2019 CSE, BMSCE 120

Answer

 Rank these functions according to their growth, from slowest
growing (at the top) to fastest growing (at the bottom).

12 September 2019 CSE, BMSCE 121

Quiz

 Rank these functions according to their growth, from
slowest growing to fastest growing.

12 September 2019 CSE, BMSCE 122

Answer

 Rank these functions according to their growth, from
slowest growing to fastest growing.

12 September 2019 CSE, BMSCE 123

Asymptote

Asymptote: A straight line that continually approaches a
given curve but does not meet it at any finite distance

12 September 2019 CSE, BMSCE 124

Rate of Growth ordering

12 September 2019 CSE, BMSCE 125

Asymptotic notation

 Asymptotic notation of an algorithm is a mathematical
representation of its complexity

 In asymptotic notation, when we want to represent the complexity of an
algorithm, we use only the most significant terms in the complexity of that
algorithm and ignore least significant terms in the complexity of that
algorithm (Here complexity may be Space Complexity or Time Complexity).

For example, consider the following time complexities of two algorithms...

 Algorithm 1 : 5n2 + 2n + 1

 Algorithm 2 : 10n2 + 8n + 3

Generally, when we analyze an algorithm, we consider the time complexity for
larger values of input data (i.e. 'n' value). In above two time complexities, for
larger value of 'n' the term in algorithm 1 '2n + 1' has least significance than
the term '5n2', and the term in algorithm 2 '8n + 3' has least significance than
the term '10n2'.

Here for larger value of 'n' the value of most significant terms (5n2 and 10n2)
is very larger than the value of least significant terms (2n + 1 and 8n + 3). So
for larger value of 'n' we ignore the least significant terms to represent overall
time required by an algorithm. In asymptotic notation, we use only the most
significant terms to represent the time complexity of an algorithm.

12 September 2019 CSE, BMSCE 126

By dropping the less significant terms and the constant
coefficients, we can focus on the important part of an algorithm's
running time—its rate of growth—without getting mired in details
that complicate our understanding. When we drop the constant
coefficients and the less significant terms, we use asymptotic
notation.

We'll see THREE types of Asymptotic Notations:

Big - Oh (O) UPPER BOUNDING function

Big - Omega (Ω) LOWER BOUNDING function

Big - Theta (Θ) ORDER or TIGHT BOUNDING function

12 September 2019 CSE, BMSCE 127

Analysis of Linear Search

Algorithm SequentialSearc(A[0..n-1,K)

i=0

While i<n and A[i]!=K do

{ i=i+1 }

If i<n

return i

else

return -1

12 September 2019 CSE, BMSCE 128

Question:
If the Key element is in the first position of the Array then
How many times the operation i=i+1 will be executed ?

If the Key element is in the last position of the Array then
How many times the operation i=i+1 will be executed ?

Analysis of Linear Search

Algorithm SequentialSearc(A[0..n-1,K)

i=0

While i<n and A[i]!=K do

{ i=i+1 }

If i<n

return i

else

return -1

12 September 2019 CSE, BMSCE 129

Answer:
Find, if the Key element is in the first position of the Array then
How many times the operation i=i+1 will be executed ?
Find, if the Key element is in the last position of the Array then
How many times the operation i=i+1 will be executed ?
Find the total lower bound and upper bound (Best and Worst case)
Running time ? Tlower(n)=1 Tupper(n)=n

Summarizing Big-O, Big-Omega, Big-theta

12 September 2019 CSE, BMSCE 130

Big-O Upper Bound

no

Summarizing Big-O, Big-Omega, Big-theta

12 September 2019 CSE, BMSCE 131

Big-O Upper Bound Big-Omega Lower Bound

no no

Summarizing Big-O, Big-Omega, Big-theta

12 September 2019 CSE, BMSCE 132

Big-O Upper Bound Big-Omega Lower Bound

Big-theta
Tight bound or Order bound

no no

no

Question

Go through the following pseudocode

containsZero(arr, n){ #assume normal array of length n

for i=1 to n {

if arr[i] == 0 return true

}

return false

What’s the lower bound or best case? Well, if the array we
give it has 0 as the first value, it will take what time ?

What’s the worst case? If the array doesn’t contain 0, it will
take what time

12 September 2019 CSE, BMSCE 133

Question

Go through the following pseudocode

containsZero(arr, n){ #assume normal array of length n

for i=1 to n {

if arr[i] == 0 return true

}

return false

What’s the lower bound or best case? Well, if the array we
give it has 0 as the first value, it will take what time ?

- Constant time: Ω (1)

What’s the worst case? If the array doesn’t contain 0, it will
take what time

- It will iterate through the whole array: O(n)

12 September 2019 CSE, BMSCE 134

Question

Go through the following pseudocode

printNums(arr,n){

for i=1 to n {

print(arr[i]);

}

Can you think of a best case and worst case??

12 September 2019 CSE, BMSCE 135

Question

Go through the following pseudocode

printNums(arr,n){

for i=1 to n {

print(arr[i]);

}

Can you think of a best case and worst case??

We can’t! No matter what array we give it, we have to
iterate through every value in the array. So the function will
take AT LEAST n time (Ω(n)), but we also know it won’t take
any longer than n time (O(n)). What does this mean? Our
function will take exactly n time i.e., Θ(n)

12 September 2019 CSE, BMSCE 136

Asymptotic notation

To compare and rank orders of growth or
rate of growth of the algorithms,
Computer Scientists use three notations:
 Big - Oh (O) UPPER BOUNDING function

 Big - Omega (Ω) LOWER BOUNDING function

 Big - Theta (Θ) ORDER BOUNDING function

12 September 2019 CSE, BMSCE 137

Big - Oh (O) UPPER BOUNDING function: Informal Intr.

 Let us consider t(n) and g(n) are non-negative functions
(or expressions) which take non-negative arguments.

 O(g(n)) is set of all functions with a smaller or
same order of growth g(n) (to within a constant
multiple, as n goes to infinity).

Ex: n ∈ O(n2) for all n>=1

12 September 2019 CSE, BMSCE 138

Informal Introduction

 Let us consider t(n) and g(n) are non-negative functions
(or expressions) which take non-negative arguments.

 O(g(n)) is set of all functions with a smaller or
same order of growth g(n) (to within a constant
multiple, as goes to infinity).

Ex: n ∈ O(n2) for all n>=1

12 September 2019 CSE, BMSCE 139

n ∈ O(n2)  n>=1

n <= n2

n n2

1 1

2 4

3 9

Informal Introduction

 Let us consider t(n) and g(n) are non-negative functions
(or expressions) which take non-negative arguments.

 O(g(n)) is set of all functions with a smaller or
same order of growth g(n) (to within a constant
multiple, as goes to infinity).

 Ex: 100n+5 ∈ O(n2) for all n>=1000

12 September 2019 CSE, BMSCE 140

Big-Oh Upper Bounding:Informal Intr.

 Let us consider t(n) and g(n) are non-negative functions
(or expressions) which take non-negative arguments.

 O(g(n)) is set of all functions with a smaller or
same order of growth g(n) (to within a constant
multiple, as goes to infinity).

 Ex: 100n+5 ∈ O(n2) for all n>=1000

12 September 2019 CSE, BMSCE 141

100n+5 ∈ O(n2)
 n>=103

100n+5 <= n2

n 100n+5 n2

102 104+5 104

103 105+5 106

104 106+5 108

Question



12 September 2019 CSE, BMSCE 142

Answer



12 September 2019 CSE, BMSCE 143

n (1/2)n(n-1) n^2

1 0 1

2 1 4

3 3 9

4 6 16

5 10 25

True for all n >=1

Question

Check which of the following statement
is true

 n3 ∈ O(n2)

 n3 ∉ O(n2)

12 September 2019 CSE, BMSCE 144

Answer

Check which of the following statement
is true

 n3 ∈ O(n2) False

 n3 ∉ O(n2) True

12 September 2019 CSE, BMSCE 145

Question

Check whether the following statement
is true

 n4 +n + 1 ∉ O(n2)

12 September 2019 CSE, BMSCE 146

Answer

Check whether the following statement
is true

 n4 +n + 1 ∉ O(n2)

True

12 September 2019 CSE, BMSCE 147

Big - Oh (O) UPPER BOUNDING function

12 September 2019 CSE, BMSCE 148

Formal Definition

Big - Oh (O) UPPER BOUNDING function

 Big - Oh notation is used to define the upper bound of an algorithm in terms

of Time Complexity. That means Big - Oh notation always indicates the maximum
time required by an algorithm for all input values. That means Big - Oh notation
describes the worst case of an algorithm time complexity.

Formal Definition

 A function f(n) is said to be in O(g(n)) , denoted

f(n) ∈ O(g(n)) (or f(n) = O(g(n))),

if f(n) is bounded above by some constant multiple of g(n) for all
large n, i.e., if there exist some positive constant c and some
nonnegative integer n0 such that

f(n) <= cg(n) for all n>=n0
(f(n) is less than or equal to cg(n) for

all values of n greater than or equal to n0)

12 September 2019 CSE, BMSCE 149

Big - Oh (O) UPPER BOUNDING function

 Big - Oh notation is used to define the upper bound of an algorithm in terms

of Time Complexity. That means Big - Oh notation always indicates the maximum
time required by an algorithm for all input values. That means Big - Oh notation
describes the worst case of an algorithm time complexity.

Formal Definition

 A function f(n) is said to be in O(g(n)) , denoted f(n) ∈ O(g(n)) (or

f(n) = O(g(n))), if f(n) is bounded above by some constant multiple
of g(n) for all large n, i.e., if there exist some positive constant c and
some nonnegative integer n0 such that

f(n) <= cg(n) for all n>=n0

12 September 2019 CSE, BMSCE 150

n is Size of program's input.

f(n) Any real world function. Example: - Running time of a machine.

g(n) Another function that we want to use as an upper-bound. Not a
real world function but preferably simple.

Example

 Consider the following f(n) and g(n)...
f(n) = 3n + 2
g(n) = n
If we want to represent f(n) as O(g(n)) then it must
satisfy f(n) <= Cg(n) for all values of C > 0 and n0>= 1

12 September 2019 CSE, BMSCE 151

Example

 Consider the following t(n) and g(n)...
f(n) = 3n + 2
g(n) = n
If we want to represent f(n) as O(g(n)) then it must satisfy f(n) <= Cg(n) for
all values of C > 0 and n0>= 1

 f(n) <= C g(n) ⇒ 3n + 2 <= Cn
Above condition is always TRUE for all values of C = 5 and n >= 1.

By using Big - Oh notation we can represent the time complexity as follows...
3n + 2 ∈ O(n) or 3n + 2 = O(n)

12 September 2019 CSE, BMSCE 152

Example

Consider the following t(n) and g(n)...
t(n) =6*2n+ n2

g(n)=2n

Represent 6*2n+ n2 ∈ O(2n)

C= ?? , n0= ??

i.e., 6*2n+ n2 <= C(2n) for all n >= n0

12 September 2019 CSE, BMSCE 153

Example

Consider the following t(n) and g(n)...
t(n) =6*2n+ n2

g(n)=2n

Represent 6*2n+ n2 ∈ O(2n)

C=7, n0=4

i.e., 6*2n+ n2 <= 7(2n) for all n >=4

12 September 2019 CSE, BMSCE 154

Question

Find the values for c and n to show that
the assertion 3n3+ 2n2 ∈ O(n3) is true

12 September 2019 CSE, BMSCE 155

Question

Find the values for c and n to show that
the assertion 3n3+ 2n2 ∈ O(n3) is true

Answer:

 C=5, n0=1

 3n3+ 2n2 <= 5(n3) for all n >=1

12 September 2019 CSE, BMSCE 156

Question

 Is the following assertion True

3n ∉ O(2n)

12 September 2019 CSE, BMSCE 157

Question

 Is the following assertion True

3n ∉ O(2n)

Answer: Yes

12 September 2019 CSE, BMSCE 158

Question

Prove that

12 September 2019 CSE, BMSCE 159

Question

Prove that

 Sol. For C=3, and n0=1,

12 September 2019 CSE, BMSCE 160

Big - Oh Notation (O)

 Big - Oh notation is used to define the upper bound of an algorithm in terms of Time
Complexity.
That means Big - Oh notation always indicates the maximum time required by an algorithm for
all input values. That means Big - Oh notation describes the worst case of an algorithm time
complexity.
Big - Oh Notation can be defined as follows...

 Consider the following graph drawn for the values of f(n) and C g(n) for input (n) value on X-
Axis and time required is on Y-Axis

 In above graph after a particular input value n0, always C g(n) is greater than f(n) which
indicates the algorithm's upper bound.

12 September 2019 CSE, BMSCE 161

Big-O

 Big-O, commonly written as O, is an Asymptotic Notation for the worst
case, or ceiling of growth for a given function. It provides us with
an asymptotic upper bound for the growth rate of runtime of an
algorithm. Say f(n) is your algorithm runtime, and g(n) is an arbitrary
time complexity you are trying to relate to your algorithm. f(n) is
O(g(n)), if for some real constants c (c > 0) and n0, f(n) <= c g(n) for
every input size n (n > n0).

Example 1

 f(n) = 3log n + 100 g(n) = log n

 Is f(n) =O(g(n))? Is 3 log n + 100=O(log n)? Let’s look to the
definition of Big-O.

 3log n + 100 <= c * log n

 Is there some pair of constants c, n0 that satisfies this for all n > n0?

 3log n + 100 <= 150 * log n, n > 2 (undefined at n = 1)

 Yes! The definition of Big-O has been met therefore f(n) is O(g(n)).

12 September 2019 CSE, BMSCE 162

Big-O

 Big-O, commonly written as O, is an Asymptotic Notation for
the worst case, or ceiling of growth for a given function. It
provides us with an asymptotic upper bound for the growth
rate of runtime of an algorithm. Say f(n) is your algorithm
runtime, and g(n) is an arbitrary time complexity you are
trying to relate to your algorithm. f(n) is O(g(n)), if for some
real constants c (c > 0) and n0, f(n) <= c g(n) for every input
size n (n > n0).

Example 2

 f(n) = 3*n^2 g(n) = n

 Is f(n) O(g(n))? Is 3 * n^2 O(n)? Let’s look at the definition of
Big-O.

 3 * n^2 <= c * n

 Is there some pair of constants c, n0 that satisfies this for all n
> 0? No, there isn’t. f(n) is NOT O(g(n)).

12 September 2019 CSE, BMSCE 163

Summarizing Big-Oh

 It would be convenient to have a form of asymptotic notation that
means "the running time grows at most this much, but it could grow
more slowly." We use "big-O" notation for just such occasions.

 If a running time is O(f(n)), then for large enough n, the running time
is at most k f(n) for some constant k. Here's how to think of a running
time that is O(f(n)):

 We say that the running time is "big-O of f(n)" or just "O of f(n)." We
use big-O notation for asymptotic upper bounds, since it bounds the
growth of the running time from above for large enough input sizes.

12 September 2019 CSE, BMSCE 164

Big - Omega (Ω) LOWER BOUNDING function

12 September 2019 CSE, BMSCE 165

Formal Definition

Big - Omega (Ω) LOWER BOUNDING function

 Big - Omega notation is used to define the lower bound of an
algorithm in terms of Time Complexity. That means Big - Omega
notation always indicates the minimum time required by an
algorithm for all input values. That means Big - Omega notation
describes the best case of an algorithm time complexity.

Formal Definition

 A function f(n) is said to be in Ω(g(n)) , denoted f(n) ∈ Ω(g(n)), if f(n)

is bounded below by some positive constant multiple of g(n) for all
large n, i.e., if there exist some positive constant c and some
nonnegative integer n0 such that

f(n) >= cg(n) for all n>=n0

12 September 2019 CSE, BMSCE 166

Big - Omega (Ω)

12 September 2019 CSE, BMSCE 167

Example

 Consider the following f(n) and g(n)...
f(n) = 3n + 2
g(n) = n
If we want to represent f(n) as Ω(g(n)) then it must
satisfy f(n) >= C g(n) for all values of C > 0 and n0>= 1

12 September 2019 CSE, BMSCE 168

Example

 Consider the following f(n) and g(n)...
f(n) = 3n + 2
g(n) = n
If we want to represent f(n) as Ω(g(n)) then it must
satisfy f(n) >= C g(n) for all values of C > 0 and n0>= 1

 f(n) >= C g(n)
⇒3n + 2 >= C n

Above condition is always TRUE for all values of

C = 1 and n >= 1.

 By using Big - Omega notation we can represent the time
complexity as follows...
3n + 2 = Ω(n)

12 September 2019 CSE, BMSCE 169

Example

 Consider the following f(n) and g(n)...
f(n) = n3 + 4n2

g(n) = n2

If we want to represent f(n) as Ω(g(n)) then it must satisfy

f(n) >= C g(n) for all values of C > 0 and n0>= 1

12 September 2019 CSE, BMSCE 170

Example

 Consider the following f(n) and g(n)...
f(n) = n3 + 4n2

g(n) = n2

If we want to represent f(n) as Ω(g(n)) then it must satisfy f(n)
>= C g(n) for all values of C > 0 and n0>= 1

 f(n) >= C g(n)
⇒n3 + 4n2 >= C n2

Above condition is always TRUE for all values of

C = 1 and n >= 1.

 By using Big - Omega notation we can represent the time
complexity as follows...
n3 + 4n2 = Ω(n2)

12 September 2019 CSE, BMSCE 171

Big-Oh and Big-Omega

 Big-Oh

 Think of it this way. Suppose you have 10 rupees in your
pocket. You go up to your friend and say, "I have an amount of
money in my pocket, and I guarantee that it's no more than
one thousand rupees." Your statement is absolutely true,
though not terribly precise.

 Big-Omega

 For example, if you really do have a one thousand rupees in
your pocket, you can truthfully say "I have an amount of
money in my pocket, and it's at least 10 rupees." That is
correct, but certainly not very precise.

12 September 2019 CSE, BMSCE 172

Big - Theta (Θ) ORDER BOUNDING function

12 September 2019 CSE, BMSCE 173

Formal Definition

Big - Theta (Θ) ORDER BOUNDING function

 Big - Theta notation is used to define the average bound of an
algorithm in terms of Time Complexity. That means Big - Theta
notation always indicates the average time required by an algorithm
for all input values. That means Big - Theta notation describes the
average case of an algorithm time complexity.

Formal Definition

 A function f(n) is said to be in Θ(g(n)) , denoted f(n) ∈ Θ(g(n)), if f(n)

is bounded above and below by some positive constant multiple of g(n)
for all large n, i.e., if there exist some positive constant c1 and c2 and
some nonnegative integer n0 such that

c1g(n) <= f(n) <= c2g(n) for all n>=n0

12 September 2019 CSE, BMSCE 174

Example

 Consider the following f(n) and g(n)...
f(n) = 3n + 2
g(n) = n
If we want to represent f(n) as Θ(g(n)) then it must
satisfy C1 g(n) <= f(n) <= C2 g(n) for all values of C1,
C2 > 0 and n0>= 1

12 September 2019 CSE, BMSCE 175

Example

 Consider the following f(n) and g(n)...
f(n) = 3n + 2
g(n) = n
If we want to represent f(n) as Θ(g(n)) then it must
satisfy C2 g(n) <= f(n) <= C1 g(n) for all values of C1,
C2 > 0 and n0>= 1

 C1 g(n) <= f(n) <= C2 g(n) ⇒
C1 n <= 3n + 2 <= C2 n

Above condition is always TRUE for all values of C1 = 1,
C2 = 5 and n >= 1.
By using Big - Theta notation we can represent the time
complexity as follows...
3n + 2 = Θ(n)

12 September 2019 CSE, BMSCE 176

Example

 Consider the following f(n) and g(n)...
f(n) = 10n3+5

g(n) = n3

If we want to represent f(n) as Θ(g(n)) then it must
satisfy C2 g(n) <= f(n) <= C1 g(n) for all values of C1,
C2 > 0 and n0>= 1

12 September 2019 CSE, BMSCE 177

Example

 Consider the following f(n) and g(n)...
f(n) = 10n3+5

g(n) = n3

If we want to represent f(n) as Θ(g(n)) then it must
satisfy C1 g(n) <= f(n) <= C2 g(n) for all values of C1,
C2 > 0 and n0>= 1

 C1 g(n) <= f(n) <= C2 g(n) ⇒
C1 n3 <= 10n3+5 <= C2 n3

Above condition is always TRUE for all values of

C1 = 10, C2 = 11 and n >= 2.
By using Big - Theta notation we can represent the time
complexity as follows...
10n3+5 = Θ(n3)

12 September 2019 CSE, BMSCE 178

Big - Oh (O) UPPER BOUNDING function

Big - Omega (Ω) LOWER BOUNDING function

Big - Theta (Θ) ORDER BOUNDING function

12 September 2019 CSE, BMSCE 179

Summarizing:
Formal Definitions of Asymptotic Notations

Big - Oh (O) UPPER BOUNDING function

 Big - Oh notation is used to define the upper bound of an algorithm in terms

of Time Complexity. That means Big - Oh notation always indicates the maximum
time required by an algorithm for all input values. That means Big - Oh notation
describes the worst case of an algorithm time complexity.

Formal Definition

 A function f(n) is said to be in O(g(n)) , denoted f(n) ∈ O(g(n)) (or

f(n) = O(g(n))), if f(n) is bounded above by some constant multiple
of g(n) for all large n, i.e., if there exist some positive constant c and
some nonnegative integer n0 such that

f(n) <= cg(n) for all n>=n0

12 September 2019 CSE, BMSCE 180

n is Size of program's input.

t(n) Any real world function. Example: - Running time of a machine.

g(n) Another function that we want to use as an upper-bound. Not a
real world function but preferably simple.

Big - Omega (Ω) LOWER BOUNDING function

 Big - Omega notation is used to define the lower bound of an
algorithm in terms of Time Complexity. That means Big - Omega
notation always indicates the minimum time required by an
algorithm for all input values. That means Big - Omega notation
describes the best case of an algorithm time complexity.

Formal Definition

 A function f(n) is said to be in Ω(g(n)) , denoted f(n) ∈ Ω(g(n)), if f(n)

is bounded below by some positive constant multiple of g(n) for all
large n, i.e., if there exist some positive constant c and some
nonnegative integer n0 such that

f(n) >= cg(n) for all n>=n0

12 September 2019 CSE, BMSCE 181

Big - Theta (Θ) ORDER BOUNDING function

 Big - Theta notation is used to define the average bound of an
algorithm in terms of Time Complexity. That means Big - Theta
notation always indicates the average time required by an algorithm
for all input values. That means Big - Theta notation describes the
average case of an algorithm time complexity.

Formal Definition

 A function f(n) is said to be in Θ(g(n)) , denoted f(n) ∈ Θ(g(n)), if f(n)

is bounded above and below by some positive constant multiple of g(n)
for all large n, i.e., if there exist some positive constant c1 and c2 and
some nonnegative integer n0 such that

c1g(n) <= f(n) <= c2g(n) for all n>=n0

12 September 2019 CSE, BMSCE 182

Question

Let us consider the problem of finding the minimum of an
array x[1..n]. The input size is n and the corresponding
algorithm can be described as follows:

In the given algorithm above, how many times the fourth
operation (m=x[i]) will be executed if the given array (x) is
having elements in ascending order ?

12 September 2019 CSE, BMSCE 183

Answer

Let us consider the problem of finding the minimum of an
array x[1..n]. The input size is n and the corresponding
algorithm can be described as follows:

In the given algorithm above, how many times the fourth
operation (m=x[i]) will be executed if the given array (x) is
having elements in ascending order ?

12 September 2019 CSE, BMSCE 184

It will not get executed

Best Case (Lower Bound)
T(n) = 0

Question

Let us consider the problem of finding the minimum of an
array x[1..n]. The input size is n and the corresponding
algorithm can be described as follows:

In the given algorithm above, how many times the fourth
operation (m=x[i]) will be executed if the given array (x) is
having elements in Descending order ?

12 September 2019 CSE, BMSCE 185

Answer

Let us consider the problem of finding the minimum of an
array x[1..n]. The input size is n and the corresponding
algorithm can be described as follows:

In the given algorithm above, how many times the fourth
operation (m=x[i]) will be executed if the given array (x) is
having elements in Descending order ?

12 September 2019 CSE, BMSCE 186

It will get executed (n-1) times

Worst Case (Upper bound)
T(n) = (n-1)

Best and Worst case

Unlike in previous examples we cannot find a general expression for the
running time. This happens because the running time of the fourth
operation does not depend only on the input size but also on the properties
of the array (mainly on the position where the minimal value appears for
the first time).

If the minimum is on the first position then the assignment 4 is not at all
executed, τ (n) = 0. This is the best case which could appear.

If, on the other hand, the array is decreasingly sorted the assignment 4 is
executed at each iteration. Thus τ(n) = n − 1. This is the worst case.

Taking into consideration the best and the worst case we can
establish a lower and an upper bound for the running time:

3n ≤ T(n) ≤ 4n−1. It is easy to see that both bounds depend
linearly on the input size.

12 September 2019 CSE, BMSCE 187

Example

12 September 2019 CSE, BMSCE 188

Example

12 September 2019 CSE, BMSCE 189

Example

12 September 2019 CSE, BMSCE 190

Question: What is the running time of this code ?

12 September 2019 CSE, BMSCE 191

Answer

12 September 2019 CSE, BMSCE 192

Question: What is the running time of this code ?

12 September 2019 CSE, BMSCE 193

Answer

12 September 2019 CSE, BMSCE 194

Question

12 September 2019 CSE, BMSCE 195

Question

12 September 2019 CSE, BMSCE 196

Answer

Question

 For the functions, nk and c​n​c, what is the

asymptotic relationship between these
functions? Assume that k >= 1 and c > 1 are
constants.

 n ​k is O(cn)

 n ​k is Ω(c​n​​)

 n ​k is Θ(c​n​​)

12 September 2019 CSE, BMSCE 197

Answer

For the functions, nk and c​n​c, what is the asymptotic relationship

between these functions? Assume that k >= 1 and c > 1 are
constants.

 n ​k is O(cn)

 n ​k is Ω(c​n​​)

 n ​k is Θ(c ​n​​)

n​k ​​ is a polynomial function, and cn is a exponential function. We know that polynomials

always grow more slowly than exponentials. We could prove that with a graph, but we
have to make sure we look at it for big values of n, because the early behavior could
be misleading. Here's a graph that compares the two functions (with k=2 and c=2),
where we can clearly see the difference in growth:

12 September 2019 CSE, BMSCE 198

Question

12 September 2019 CSE, BMSCE 199

Question

12 September 2019 CSE, BMSCE 200

Question

Consider the following three claims

Which of these claims are correct ?

(A) 1 and 2 (B) 1 and 3
(C) 2 and 3 (D) 1, 2, and 3

12 September 2019 CSE, BMSCE 201

Question

Consider the following three claims

Which of these claims are correct ?

(A) 1 and 2 (B) 1 and 3
(C) 2 and 3 (D) 1, 2, and 3

Answer:(A)
Explanation: (n + k)m and Θ(nm) are asymptotically same as
theta notation can always be written by taking the leading order
term in a polynomial expression.

2n + 1 and O(2n) are also asymptotically same as 2n + 1 can be
written as 2 * 2n and constant multiplication/addition doesn’t
matter.

22n + 1 and O(2n) are not same as constant is in power.

12 September 2019 CSE, BMSCE 202

Question

12 September 2019 CSE, BMSCE 203

Question

12 September 2019 CSE, BMSCE 204

Answer

12 September 2019 CSE, BMSCE 205

In conclusion, all of the statements are true.

Useful Property Involving the Asymptotic Notations

12 September 2019 CSE, BMSCE 206

Useful Property Involving the Asymptotic Notations (Contd…)

12 September 2019 CSE, BMSCE 207

Using Limits for Comparing Orders of Growth

 Though the formal definitions of O, Ω and Θ are
indispensable for proving their abstract properties, they
are rarely used for comparing the orders of growth of
two specific functions. A much more convenient method
for doing so is based on computing the limit of the ratio
of two functions in question. Three principal cases may
arise:

12 September 2019 CSE, BMSCE 208

Example

12 September 2019 CSE, BMSCE 209

Problem

12 September 2019 CSE, BMSCE 210

Thanks for Listening

12 September 2019 CSE, BMSCE 211

Quiz

 Match each function with an equivalent function, in
terms of their Θ. Only match a function if f(n) = Θ(g(n)).

12 September 2019 CSE, BMSCE 212

 Given N distinct integers, how many
triples sum to exactly zero?

12 September 2019 CSE, BMSCE 213

Brute-force algorithm

12 September 2019 CSE, BMSCE 214

Program Performance

 Program performance is the amount
of computer memory and time
needed to run a program.

 How is it determined?
1. Analytically
 performance analysis

2. Experimentally
 performance measurement

12 September 2019 CSE, BMSCE 215

Criteria for Measurement

 Space
 amount of memory program occupies

 usually measured in bytes, KB or MB

 Time
 execution time

 usually measured by the number of
executions

12 September 2019 CSE, BMSCE 216

Components of Program Space

 Program space = Instruction space +
data space + stack space

 The instruction space is dependent
on several factors.
 the compiler that generates the machine

code

 the compiler options that were set at
compilation time

 the target computer

12 September 2019 CSE, BMSCE 217

Components of Program Space

 Data space

 very much dependent on the computer
architecture and compiler

 The magnitude of the data that a
program works with is another factor

char 1 float 4
short 2 double 8
int 2 long double 10
long 4 pointer 2

Unit: bytes

12 September 2019 CSE, BMSCE 218

Components of Program Space

 Environment Stack Space
 Every time a function is called, the

following data are saved on the stack.
1. the return address

2. the values of all local variables and value
formal parameters

3. the binding of all reference and const
reference parameters

 What is the impact of recursive function
calls on the environment stack space?

12 September 2019 CSE, BMSCE 219

int mean(int a[], size_t n)

{

int sum = 0; // 1 step * 1

for (int i = 0; i < n; i++) // 1 step * (N+1)

sum += a[i]; // 1 step * N

return sum; // 1 step * 1

}

 Add up the steps: 1 + (N+1) + N + 1

 Reduce: 2N + 3

12 September 2019 CSE, BMSCE 220

Quiz: Running time of binary search

32 teams qualified for the 2014 World Cup. If the
names of the teams were arranged in sorted order
(an array), how many items in the array would
binary search have to examine to find the location
of a particular team in the array, in the worst
case?

A. At most, 1

B. At most, 16

C. At most, 6

D. At most, 32

12 September 2019 CSE, BMSCE 221

Quiz: Running time of binary search

What is lg(32), the base-2 logarithm of
32?

A. 5

B. 32

C. 16

D. 1

12 September 2019 CSE, BMSCE 222

Quiz: Running time of binary search

You have an array containing the prime numbers from 2 to
311 in sorted order: [2, 3, 5, 7, 11, 13, ..., 307, 311]. There
are 64 items in the array. About how many items of the
array would binary search have to examine before
concluding that 52 is not in the array, and therefore not
prime?

A. 32

B. 11

C. 64

D. 128

E. 22

F. 1

G. 7

12 September 2019 CSE, BMSCE 223

 Suppose you have the following
sorted list [3, 5, 6, 8, 11, 12, 14, 15,
17, 18] and are using the recursive
binary search algorithm. Which group
of numbers correctly shows the
sequence of comparisons used to find
the key 8.

 (A) 11, 5, 6, 8
(B) 12, 6, 11, 8
(C) 3, 5, 6, 8
(D) 18, 12, 6, 8

12 September 2019 CSE, BMSCE 224

 Suppose you have the following
sorted list [3, 5, 6, 8, 11, 12, 14, 15,
17, 18] and are using the recursive
binary search algorithm. Which group
of numbers correctly shows the
sequence of comparisons used to
search for the key 16?(A) 11, 14, 17
(B) 18, 17, 15
(C) 14, 17, 15
(D) 12, 17, 15

12 September 2019 CSE, BMSCE 225

Pseudocode for (Euclid’s Algorithm),
gcd(m, n)

ALGORITHM Euclid(m, n)

// Computes gcd(m, n) by Euclid’s algorithm

// Input: Two nonnegative, not-both-zero integers m and n

//Output: Greatest common divisor of m and n

while n ≠ 0 do

r = m mod n

m = n

n = r

return m

9/12/2019 226

What happens if m < n ?

gcd(m, n) = gcd(n, m mod n)
gcd(24, 60) = gcd(60, 24 mod 60)

What is the minimum number of divisions
among all inputs 1 ≤ m, n ≤ 10 ?

Second try: Consecutive Integer Checking,
gcd(m, n)

 Step 1: Assign the value of min{m, n} to q.

 Step 2: Divide m by q. If the remainder is 0,
go to Step 3; otherwise, go to Step 4.

 Step 3: Divide n by q. If the remainder is 0,
return the value of q as the answer and stop;
otherwise, proceed to Step 4.

 Step 4: Decrease the value of q by 1. Go to
Step 2.

Which one is faster, Euclid’s or this one ?

9/12/2019 227

Does it work when m or n is 0 ?

Third try: Middle-school, gcd(m, n)

 Step 1: Find prime factors of m.

 Step 2: Find prime factors of n.

 Step 3: Identify all common prime factors of
m and n (if p is a prime factor occurring pm

and pn times in m and n, it should be
repeated min{pm,pn} times)

 Step 4: Compute product of all common

factors and return product as the answer.

Is it legitimate algorithm?

9/12/2019 228

Test Your Knowledge

 Find Time Complexity of the following Algorithm

 Thus the running time can be computed by using the following
costs table:

 The overall cost will be: T(m, n, p) = 4mnp + 5mp + 4m + 2.

12 September 2019 CSE, BMSCE 229

