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Unit 1: Introduction to Algorithms

- Fundamentals of Algorithmic Problem Solving
- Space and Time Complexity
- Order of Growth
- Asymptotic Notations
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Algorithm

 An algorithm is a sequence of unambiguous
instructions for solving a computational
problem, i.e., for obtaining a required output
for any legitimate input in a finite amount of
time.
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Examples of Algorithms

Computing Greatest Common Divisor of Two 
non-negative, not-both zero Integers

 gcd(m, n): the largest integer that divides both 
m and n

 First try - Euclid’s Algorithm: 

 Idea: gcd(m, n) = gcd(n, m mod n)
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Greatest Common Divisor (Euclid’s 
Algorithm), gcd(m, n)

 Step 1: If n = 0, return value of m as 
the answer and stop; otherwise, 
proceed to Step 2.

 Step 2: Divide m by n and assign the 
value of the remainder to r.

 Step 3: Assign the value of n to m 
and the value of r to n. Go to Step 1.
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Pseudocode for (Euclid’s Algorithm), 
gcd(m, n)

ALGORITHM Euclid(m, n)

// Computes gcd(m, n) by Euclid’s algorithm

// Input: Two nonnegative, not-both-zero integers m and n

//Output: Greatest common divisor of m and n

while n ≠ 0 do

r = m mod n

m = n

n = r

return m
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Question:
GCD(36,48) how many division 
Operations are required to compute
GCD using Euclid algorithm ?



Second try: Middle-school procedure, gcd(m, n)

 Step 1: Find prime factors of m.

 Step 2: Find prime factors of n.

 Step 3: Identify all common prime factors of 
m and n 

 Step 4: Compute product of all common 

factors and return product as the answer.
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Question:
GCD(36,48) how many division 
Operations are required to compute
GCD using Middle-School procedure ?



Third try: Consecutive Integer Checking, 
gcd(m, n)

 Step 1: Assign the value of min{m, n} to q.

 Step 2: Divide m by q. If the remainder is 0, 
go to Step 3; otherwise, go to Step 4.

 Step 3: Divide n by q. If the remainder is 0, 
return the value of q as the answer and stop; 
otherwise, proceed to Step 4.

 Step 4: Decrease the value of q by 1. Go to 
Step 2.
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Question:
Try  computing GCD(36,48) using 
Consecutive Integer
Checking method ?



What can we learn from the three 
examples of gcd(m, n) ?

 Each step must be basic and unambiguous

 Same algorithm, but different 
representations (different pseudocodes)

 Same problem, but different algorithms, 
based on different ideas and having 
dramatically different speeds.

 gcd(31415, 14142) = 1; Euclid takes ~0.08 ms
whereas Consecutive Integer Checking takes 
~0.55 ms, about 7 times speedier
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Method 1: Greatest Common Divisor 
(Euclid’s Algorithm), gcd(m, n)

 Step 1: If n = 0, return value of m as 
the answer and stop; otherwise, 
proceed to Step 2.

 Step 2: Divide m by n and assign the 
value of the remainder to r.

 Step 3: Assign the value of n to m 
and the value of r to n. Go to Step 1.
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Method 2: Consecutive Integer Checking, 
gcd(m, n)

 Step 1: Assign the value of min{m, n} to q.

 Step 2: Divide m by q. If the remainder is 0, 
go to Step 3; otherwise, go to Step 4.

 Step 3: Divide n by q. If the remainder is 0, 
return the value of q as the answer and stop; 
otherwise, proceed to Step 4.

 Step 4: Decrease the value of q by 1. Go to 
Step 2.
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C++ Program - Analysis of the methods to find the GCD of two numbers
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#include<iostream.h>
#include<conio.h>
#include<time.h>

long int euclid(long int m,long int n)
{

clock_t start,end;
start=clock();
long int r;
while(n!=0)
{

r=m%n;
m=n;
n=r;

}
end=clock();
cout<<endl<<"Time 

taken:"<<(end-start)/CLK_TCK<<" sec";
return m;

}



C++ Program - Analysis of the methods to find the GCD of two numbers
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long int con(long int m,long int n)
{

clock_t start,end;
start=clock();
long int t,r,g;
if(m>n)
{  t=n; }
else
{   t=m; }

a:do
{

r=m%t;
if(r!=0)
t--;

} while(r!=0);

if(r==0)
{

r=n%t;
if(r==0)
g=t;
else
{
t--;
goto a;

}
}
end=clock();
cout<<"Time taken :"<<(end-

start)/CLK_TCK<<" sec";
return g;

} /*End of the function con*/



C++ Program - Analysis of the methods to find the GCD of two numbers
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void main()
{

long int x,y;
clrscr();

cout<<"\t\t\tANALYSIS OF THE TWO ALGORITHMS"<<endl<<endl;
cout<<"GCD - EUCLID'S ALG : "<<endl;
cout<<"enter two numbers:";
cin>>x>>y;
cout<<endl<<endl<<"GCD : "<<euclid(x,y);
cout<<endl<<endl<<"------------------------------------------------";
cout<<endl<<endl<<"GCD - CONSECUTIVE INTEGER CHECKING ALG : 
"<<endl<<endl;
cout<<endl<<endl<<"GCD : "<<con(x,y);
getch();

}



ANALYSIS OF THE TWO LGORITHMS

GCD - EUCLID'S ALG :

enter two numbers:7896543      345678

Time taken: 0.08 millisecond

GCD : 3

------------------------------------------------

GCD - CONSECUTIVE INTEGER CHECKING ALG :

Time taken :0.55  millisecond

GCD : 3
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INFERENCE:

The euclid’s method takes less time than the consecutive integer 

checking method and hence euclid’s method is better.



Fundamentals of Algorithmic Problem Solving

 Sequence of steps in the process of design and analysis 
of algorithms
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Question

With the help of a flow chart, explain the
various steps of algorithm design and
analysis process.
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Fundamentals of Algorithmic Problem 
Solving (Contd….)

 Understanding the problem

 Ask questions, do a few small 
examples by hand, think about special 
cases, etc.

 An input is an instance of the problem 
the algorithm solves

 Specify exactly the set of instances the 
algorithm needs to handle

 Example: gcd(m, n)
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 Decide on

 Exact vs. approximate solution

 Approximate algorithm: Cannot solve 
exactly, e.g., extracting square roots, 
solving nonlinear equations, etc.

 Appropriate Data Structure
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Fundamentals of Algorithmic Problem 
Solving (Contd….)



 Design algorithm

 Prove correctness of the algorithm

 Yields required output for every 
legitimate input in finite time

 E.g., Euclid’s: gcd(m, n) = gcd(n, m 
mod n)

 Second integer gets smaller on every 
iteration, because (m mod n) can be 0, 1, 
…, n-1 thus less than n

 The algorithm terminates when the 
second integer is 0

9/12/2019 20

Fundamentals of Algorithmic Problem 
Solving (Contd….)



 Analyze algorithm

 Time efficiency: How fast it runs

 Space efficiency: How much extra 
memory it uses

 Simplicity: Easier to understand, 
usually contains fewer bugs, 
sometimes simpler is more efficient, 
but not always!

 Generality: Example, whether two 
integers  are relatively prime, use 
gcd(m, n)
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Fundamentals of Algorithmic Problem 
Solving (Contd….)



 Coding algorithm

 Write in a programming language for a 
real machine

 Standard tricks:

 Compute loop invariant (which does not 
change value in the loop) outside loop

 Replace expensive operation by cheap 
ones
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Fundamentals of Algorithmic Problem 
Solving (Contd….)



Discussion: Algorithms in your Life

What algorithms do you use in every day life? Do you think you could 
write a program to make them more efficient?

What algorithms do you think are used by your favorite Games and 
Apps?

Have you ever made an algorithm for a program? What did it do? Was 
it correct and efficient?
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Test Your Analytical Skill
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Problem 1

There are n lockers in a hallway numbered
sequentially from 1 to n. Initially, all the locker
doors are closed. You make n passes by the lockers,
each time starting with locker #1. On the ith pass, i
= 1, 2, ..., n, you toggle the door of every ith
locker: if the door is closed, you open it, if it is
open, you close it. For example, after the first pass
every door is open; on the second pass you only
toggle the even-numbered lockers (#2, #4, ...) so
that after the second pass the even doors are closed
and the odd ones are opened; the third time
through you close the door of locker #3 (opened
from the first pass), open the door of locker #6
(closed from the second pass), and so on. After the
last pass, which locker doors are open and which are
closed? How many of them are open ?



Easy but inefficient



Better



Better



Problem 1

 Design an algorithm for swapping two 3 digit non-zero
integers n, m. Besides using arithmetic operations, your
algorithm should not use any temporary variable.

 Solution

1) use 2 variables (say) a & b
2) ask user to input values
3) read values
4) execute the Exclusive-Or (XOR) operation like this to 
swap a and b:
a ^= b;
b ^= a;
a ^= b;
5) display the swapped values

Similarly you can try with Addition-Subtraction or 
Multiplication-Divition
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Analysis of Algorithms

Space Complexity
Time Complexity
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Reasons to Analyze Algorithms

 Predict Performance

 Compare Algorithms

 Provide Guarantees

 Understand theoretical basis.

 Primary Practical Reason: Avoid Performance 
Bugs
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Performance measure of the algorithm

Two kinds of efficiency:
Space Efficiency or Space Complexity
Time Efficiency or Time Complexity
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Two kinds of Algorithm Efficiency

 Analyzing the efficiency of an algorithm (or the 
complexity of an algorithm) means establishing the 
amount of computing resources needed to execute the 
algorithm. There are two types of resources: 

• Memory space. It means the amount of space used to 
store all data processed by the algorithm. 

• Running time. It means the time needed to execute all the 
operations specified in the algorithm. 

Space efficiency: Deals with the space required by the 
algorithm

Time efficiency: It indicates how fast an algorithm runs.
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What is Space complexity?

For any algorithm, memory is required for the following purposes...

 Memory required to store program instructions

 Memory required to store constant values

 Memory required to store variable values

Space complexity of an algorithm can be defined as follows...

Total amount of computer memory required by an algorithm to 
complete its execution is called as space complexity of that 
algorithm
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What is Space complexity?

For any algorithm, memory is required for the following purposes...

 Memory required to store program instructions

 Memory required to store constant values

 Memory required to store variable values

Space complexity of an algorithm can be defined as follows...

Total amount of computer memory required by an algorithm to 
complete its execution is called as space complexity of that 
algorithm

Generally, when a program is under execution it uses the computer 
memory for THREE reasons. They are as follows...

 Instruction Space: It is the amount of memory used to store 
compiled version of instructions.

 Data Space: It is the amount of memory used to store all the 
variables and constants.

 Environmental Stack: It is the amount of memory used to store 
information of partially executed functions at the time of function call.
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Space Complexity

Instruction space + Data space + Stack 
space
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Calculating Space Complexity

To calculate the space complexity, we must know the
memory required to store different datatype values
(according to the compiler). For example, the C
Programming Language compiler requires the following...

 1 byte to store Character value,

 2 bytes to store Integer value,

 4 bytes to store Floating Point value,

 6 or 8 bytes to store double value
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Calculating Space Complexity

Example, Calculating the Data Space required for the following 
given code

int square(int a) 

{ 

return a*a; 

}
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Calculating Space Complexity

Example, Calculating the Data Space required for the following 
given code

int square(int a) 

{ 

return a*a; 

}
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Data Space
Required

For int a 2 Bytes

For returning a*a 2 Bytes

Total 4 Bytes



Calculating Space Complexity

Example: 

int square(int a) 

{ 

return a*a; 

}

Data Space Required:

 This code requires 2 bytes of memory to store variable 'a' and 
another 2 bytes of memory is used for return value.

 That means, totally it requires 4 bytes of memory to 
complete its execution. And this 4 bytes of memory is fixed for 
any input value of 'a'. This space complexity is said to 
be Constant Space Complexity.

 If any algorithm requires a fixed amount of space for all 
input values then that space complexity is said to be Constant 
Space Complexity
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Data Space
Required

For int a 2 Bytes

For returning a*a 2 Bytes

Total 4 Bytes



Calculating Space Complexity

Example, Calculating the Data Space required for the following 
given code

int sum(int A[], int n) { 

int sum = 0, i; 

for(i = 0; i < n; i++) 

sum = sum + A[i]; 

return sum; 

}

12 September 2019 CSE, BMSCE 41



Calculating Space Complexity

Example, Calculating the Data Space required for the following 
given code

int sum(int A[], int n) { 

int sum = 0, i; 

for(i = 0; i < n; i++) 

sum = sum + A[i]; 

return sum; 

}
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Data Space
Required

For parameter int A[] n *2 Bytes

For parameter n 2 Bytes

For local variable sum 2 Bytes

For local variable i 2 Bytes

Total 2n+6 Bytes



Calculating Space Complexity

int sum(int A[], int n) { 

int sum = 0, i; 

for(i = 0; i < n; i++) 

sum = sum + A[i]; 

return sum; }

Data Space Required:

 'n*2' bytes of memory to store array variable 'a[]'
2 bytes of memory for integer parameter 'n'
4 bytes of memory for local integer variables 'sum' and 'i' (2 
bytes each)

 That means, totally it requires '2n+6' bytes of memory to complete 
its execution. Here, the amount of memory depends on the input value 
of 'n'. This space complexity is said to be Linear Space Complexity.

If the amount of space required by an algorithm is increased with 
the increase of input value, then that space complexity is said to be 
Linear Space Complexity
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Test your Knowledge

 Find Data Space required for the 
following code:

int sum(int x, int y, int z) {

int r = x + y + z; 

return r;

}
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Is the Space Complexity of this code is 
―Constant Space Complexity”
or ―Linear Space Complexity” ?



Test your Knowledge

 Find Data Space required for the 
following code:

void matrixAdd(int a[], int b[], int c[], int n) {

for (int i = 0; i < n; ++i) {

c[i] = a[i] + b[j]

}

}
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Is the Space Complexity of this code is 
―Constant Space Complexity”
or ―Linear Space Complexity” ?



Performance measure of the algorithm

Two kinds of efficiency:
Space Efficiency or Space Complexity
Time Efficiency or Time Complexity
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What is Time complexity?

 Every algorithm requires some amount of computer time to 
execute its instruction to perform the task. This computer time 
required is called time complexity.

Time complexity of an algorithm can be defined as follows...

 The time complexity of an algorithm is the total amount 
of time required by an algorithm to complete its 
execution.
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What is Time complexity?

 Every algorithm requires some amount of computer time to 
execute its instruction to perform the task. This computer time 
required is called time complexity.

Time complexity of an algorithm can be defined as follows...

 The time complexity of an algorithm is the total amount 
of time required by an algorithm to complete its 
execution.

Generally, running time of an algorithm depends upon the 
following...

 Whether it is running on Single processor machine or Multi processor 
machine.

 Whether it is a 32 bit machine or 64 bit machine

 Read and Write speed of the machine.

 The time it takes to 
perform Arithmetic operations, logical operations, return value 
and assignment operations etc.,

 Input data
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Calculating Time Complexity

 When we calculate time complexity of an algorithm, we 
consider only input data and ignore the remaining 
things, as they are machine dependent.

Example, Calculating the Time Complexity required for the 
following given code

int sum(int a, int b) { 

return a+b; 

}
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Time 
Required

To calculate
a+b

1 Unit of time

For returning
a+b

1 Unit of time

Total 2 Units of 
time



Calculating Time Complexity

 When we calculate time complexity of an algorithm, we 
consider only input data and ignore the remaining 
things, as they are machine dependent.

Example, Calculating the Time Complexity required for the 
following given code

int sum(int a, int b) { 

return a+b; 

}
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Time Required *

To calculate
a+b

1 Unit of time 1 Secs

For returning
a+b

1 Unit of time 1 Secs

Total 2 Units of time 2 Secs

*Hypothetical approximation
of time



Calculating Time Complexity

 When we calculate time complexity of an algorithm, we 
consider only input data and ignore the remaining 
things, as they are machine dependent.

Example:

int sum(int a, int b) { 

return a+b; }

This Code requires 1 unit of time to calculate a+b and 1 unit 
of time to return the value. That means, totally it takes 2 
units of time to complete its execution. And it does not 
change based on the input values of a and b. That means for 
all input values, it requires same amount of time i.e. 2 units.

If any program requires fixed amount of time for all input 
values then its time complexity is said to be Constant Time 
Complexity.
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Calculating Time Complexity

Example, Calculate Time complexity for the following given code:

int fun(int A[], int n) { 

int sum = 0, i; 

for(i = 0; i < n; i++)  

sum = sum + A[i]; 

return sum;  

}
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Calculating Time Complexity

int sumOfList(int A[], int n) { 

int sum = 0, i; 

for(i = 0; i < n; i++)  sum = sum + A[i]; 

return sum;  }

For the above code, time complexity can be calculated as follows...
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Cost or
Number Operations in the 

Statement

int sum = 0, i; 1
(sum=0 initializing sum with 

zero )

for(i = 0; i < n; i++)

sum = sum + A[i];

return sum; 



Calculating Time Complexity

int sumOfList(int A[], int n) { 

int sum = 0, i; 

for(i = 0; i < n; i++)  sum = sum + A[i]; 

return sum;  }

For the above code, time complexity can be calculated as follows...
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Cost or
Number Operations in the 

Statement

int sum = 0, i; 1
(initializing zero to sum)

for(i = 0; i < n; i++) 1    + 1   + 1
(i=0,   i<n,  i++)

sum = sum + A[i];

return sum; 



Calculating Time Complexity

int sumOfList(int A[], int n) { 

int sum = 0, i; 

for(i = 0; i < n; i++)  sum = sum + A[i]; 

return sum;  }

For the above code, time complexity can be calculated as follows...
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Cost or
Number Operations in the 

Statement

int sum = 0, i; 1
(initializing zero to sum)

for(i = 0; i < n; i++) 1+1+1
(i=0, i<n,  i++)

sum = sum + A[i]; 1+ 1
(Addition and Assigning result 

to sum)

return sum; 1
(returning sum)



Calculating Time Complexity

int sumOfList(int A[], int n) { 

int sum = 0, i; 

for(i = 0; i < n; i++)  sum = sum + A[i]; 

return sum;  }

For the above code, time complexity can be calculated as follows...
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Cost or
Number Operations in the 

Statement

Repetitions or
No. of Times of 
Execution

int sum = 0, i; 1 1

for(i = 0; i < n; i++) 1+1+1

sum = sum + A[i]; 1+ 1

return sum; 1



Calculating Time Complexity

int sumOfList(int A[], int n) { 

int sum = 0, i; 

for(i = 0; i < n; i++)  sum = sum + A[i]; 

return sum;  }

For the above code, time complexity can be calculated as follows...
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Cost or
Number Operations in the 

Statement

Repetitions or
No. of Times of 
Execution

int sum = 0, i; 1 1

for(i = 0; i < n; i++) 1+1+1 1+(n+1)+n
(i=0 gets executed one 
time, i<n gets executed 
(n+1) times, i++ gets 

executed n times

sum = sum + A[i]; 1+ 1

return sum; 1

Total



Calculating Time Complexity

int sumOfList(int A[], int n) { 

int sum = 0, i; 

for(i = 0; i < n; i++)  sum = sum + A[i]; 

return sum;  }

For the above code, time complexity can be calculated as follows...
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Cost or
Number Operations in the 

Statement

Repetitions or
No. of Times of 
Execution

int sum = 0, i; 1 1

for(i = 0; i < n; i++) 1+1+1 1+(n+1)+n

sum = sum + A[i]; 1+ 1 n + n

return sum; 1 1



Calculating Time Complexity

int sumOfList(int A[], int n) { 

int sum = 0, i; 

for(i = 0; i < n; i++)  sum = sum + A[i]; 

return sum;  }

For the above code, time complexity can be calculated as follows...
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Cost or
Number Operations in the 

Statement

Repetitions or
No. of Times of 
Execution

Total

int sum = 0, i; 1 1 1

for(i = 0; i < n; i++) 1+1+1 1+(n+1)+n 2n+2

sum = sum + A[i]; 1+ 1 n + n 2n

return sum; 1 1 1

Running Time T(n) 4n+4



Calculating Time Complexity (Contd….

 For the calculation done in previous slide
Cost is the amount of computer time required for a single operation in 
each line.
Repetition is the amount of computer time required by each operation 
for all its repetitions.
Total is the amount of computer time required by each operation to 
execute.

So above code requires '4n+4' Units of computer time to complete 
the task. Here the exact time is not fixed. And it changes based on 
the n value. If we increase the n value then the time required also 
increases linearly.

Totally it takes '4n+4' units of time to complete its execution and it 
is Linear Time Complexity.

 If the amount of time required by an algorithm is increased with the 
increase of input value then that time complexity is said to be Linear 
Time Complexity
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Test Your Knowledge

Find Time Complexity of 

the given  Algorithm

12 September 2019 CSE, BMSCE 61



Test Your Knowledge

Find Time Complexity of 

the given  Algorithm
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Cost or
Number Operations 
in the Statement

Repetitions or
No. of Times of 
Execution

Total

1 1 1 1

2 1 1 1

3 1 n+1 n+1

4 1+1 n+n 2n

5 1+1 n+n 2n

7 1 1 1

Running Time T(n) 5n+4



Test Your Knowledge

 Find Time Complexity of the following Algorithm
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int product(int a[m][n], int b[n][p]){
for(i=1;i<=m;i++){

for(j=1;j<=p;j++){
c[i][j]=0;

for(k=1;k<=n;k++){
c[i][j]=c[i][j]+a[i][k]*b[k][j]

}

}

}
return c
}



Test Your Knowledge
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Cost or
Number Operations 
in the Statement

Repetitions or
No. of Times of 
Execution

Total

1 1+1+1 1+(m+1)+m 2m+2 2m+2

2 1+1+1 (1+(p+1)+p)m (2p+2)m 2pm+2m

3 1 (p)m pm pm

4 1+1+1 ((1+(n+1)+n)p)m ((2n+2)p)
m

2npm+
2pm

5 1+1+1 ((n+n+n)p)m ((3n)p)m 3npm

9 1 1 1 1

Running Time T(n) 5npm+
5pm+4m
+3

Find Time Complexity for the
given Algorithm



Given two algorithms for a task, how do we find out which 
one is better?

One naive way of doing this is – implement both the algorithms 
and run the two programs on your computer for different inputs 
and see which one takes less time. There are many problems with 
this approach for analysis of algorithms.
1) It might be possible that for some inputs, first algorithm 
performs better than the second. And for some inputs second 
performs better.
2) It might also be possible that for some inputs, first algorithm 
perform better on one machine and the second works better on 
other machine for some other inputs.
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Problem

Algorithm1 Algorithm2



Question

What is the meaning of the notation T(n)
w.r.t analysis of algorithms ?  
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Answer

 TA(n) = Maximum time taken (or 
Number of Machine operations needed) 
by the algorithm A to solve input of 
size n. 

 Input size refers to number of values in 
the data set. Example: Say ten lakh 
Aadhar card numbers has to be sorted 
then input size n refers to 10,00,000

 TA(n) is the measure of Goodness of 
Algorithm A
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T(n)

Expression we get for T(n) may not be of 
great consequence for real Computers 
/Computations because it various from one 
machine architecture to another machine 
architecture
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Example: Program 1

#include <stdio.h>

main(){

int n,temp;

scanf(―%d‖,&n)

temp=10*30;

}
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Example: Program 1

#include <stdio.h>

main(){

int n,temp;

scanf(―%d‖,&n)

temp=10*30;

}
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Cost or
Number 

Operations in the 
Statement

Repetitions or
No. of Times 
of Execution

Total

temp=10*30; 1+1 1+1 2

Running Time T(n) 2



Example: Program 1

#include <stdio.h>

main(){

int n,temp;

scanf(―%d‖,&n)

temp=10*30;

}
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Cost or
Number 

Operations in the 
Statement

Repetitions or
No. of Times 
of Execution

Total

temp=10*30; 1+1 1+1 2

Running Time T(n) 2

Running Time T(n)=2

Constant Time



Example: Program 2

#include <stdio.h>

main(){

int i, n,temp;

scanf(―%d‖,&n)

for(i=0; i < n; i++) { 

temp=10*30;

}

}
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Example: Program 2

#include <stdio.h>

main(){

int i, n,temp;

scanf(―%d‖,&n)

for(i=0; i < n; i++) { 

temp=10*30;

}

}
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Cost or
Number of 

Operations in the 
Statement

Repetitions or
No. of Times of 
Execution

Total

for(i=0; i < n; i++) 1+1+1 1+(n+1)+n 2n+2

temp=10*30; 1+1 n+n 2n

Running Time T(n) 4n+2



T(n) for different values of n

#include <stdio.h>

main(){

int i, n,temp;

scanf(―%d‖,&n)

for(i=0; i < n; i++) { 

temp=10*30;

}   }
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n T(n)=4n+2 On Computer 1
Time taken(in Secs)

On Computer 2 Time 
taken (in Secs)

10 42 ?? ??

20 82 ?? ??

1000 4002 ?? ??

50000 20002 ?? ??

Running Time T(n)=4n+2



T(n) for different values of n

#include <stdio.h>

#include <time.h>

main(){

long int n,i; int temp;

clock_t start, end;

scanf(―%ld‖,&n)

start=clock();

for(i=0; i < n; i++) { 

temp=10*30;

}

end=clock();

printf(―Time take %f in Secs‖,(((double)(end-start))/CLOCKS_PER_SEC));

}
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Running Time T(n)=4n+2



T(n) for different values of n

#include <stdio.h>

main(){

int i, n,temp;

scanf(―%d‖,&n)

for(i=0; i < n; i++) { 

temp=10*30;

}   }
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n T(n)=4n+2 On Computer 1
Time taken(in Secs)

On Computer 2 Time 
taken (in Secs)

10 42 0.000002

20 82 0.000003

1000 4002 0.000010

50000 200002 0.000395



T(n) for different values of n

#include <stdio.h>

main(){

int i, n,temp;

scanf(―%d‖,&n)

for(i=0; i < n; i++) { 

temp=10*30;

}   }
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n T(n)=4n+2 On Computer 1
Time taken(in Secs)

On Computer 2 Time 
taken (in Secs)

10 42 0.000002 0.000002

20 82 0.000003 0.000002

1000 4002 0.000010 0.000006

50000 200002 0.000395 0.000252



T(n) for different values of n

#include <stdio.h>

main(){

int i, n,temp;

scanf(―%d‖,&n)

for(i=0; i < n; i++) { 

temp=10*30;

}   }
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n T(n)=4n+2 On Computer 1
Time taken(in Secs)

On Computer 2 Time 
taken (in Secs)

10 42 0.000002 0.000002

20 82 0.000003 0.000002

1000 4002 0.000010 0.000006

50000 200002 0.000395 0.000252

Running Time T(n)=4n+2

Linear Time



Example: Program 3

#include <stdio.h>

main(){  int i,j,n,temp;

scanf(―%d‖, &n)

for(i=0; i < n; i++) { 

for(j=0; j < n;j++) { 

temp=10*30;

}  } }

12 September 2019 CSE, BMSCE 79

Cost or
Number 

Operations in the 
Statement

Repetitions or
No. of Times of 
Execution

Total

for(i=0; i < n; i++) 1+1+1 1+(n+1)+n 2n+2

for(j=0; j < n; j++) 1+1+1 (1+(n+1)+n)n 2n2+2n

temp=10*30; 1+1 (n+n)n 2n2

Running Time T(n) 4n2+4n
+2



T(n) for different values of n

#include <stdio.h>

main(){  int i,j,n,temp;

scanf(―%d‖, &n)

for(i=0; i < n; i++) { 

for(j=0; j < n;j++) { 

temp=10*30;

}  } }
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n T(n)=4n2+4
n+2

On Computer 1
Time taken(in Secs)

On Computer 2 Time 
taken (in Secs)

10 442 0.000003 0.000002

20 1682 0.000010 0.000007

1000 4004002 0.008255 0.005062

50000 10000200002 5.766243 4.765878

Running Time T(n)=4n2+4n+2

Quadratic Time



Rate of Growth or Order of Growth

Order of growth in algorithm means how the time for computation
increases when you increase the input size. It really matters when your
input size is very large.

Order of growth provide only a crude description of the behavior of a process.

Algorithms analysis is all about understanding growth rates. That is as the
amount of data gets bigger, how much more resource will my algorithm
require? Typically, we describe the resource growth rate of a piece of code in
terms of a function.
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Order of Growth: Linear vs Quadratic
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n T(n)=4n+2 T(n)=4n^2+4n+2

1 6 10

2 10 26

3 14 50

4 18 82

5 22 122

6 26 170

7 30 226

8 34 290

9 38 362

10 42 442

Example



Order of Growth: Linear vs Quadratic
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n T(n)=4n+2 T(n)=4n^2+4n+2

1 6 10

2 10 26

3 14 50

4 18 82

5 22 122

6 26 170

7 30 226

8 34 290

9 38 362

10 42 442

Example



Example: Program 4

#include <stdio.h>

main(){  int i,j,k, n,temp;

scanf(―%d‖, &n)

for(i=0; i < n; i++) { 

for(j=0; j < n;j++) { 

for(k=0; k < n;k++) { 

temp=10*30;

}  } } }
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Example: Program 4

#include <stdio.h>

main(){  int i,j,k, n,temp;

scanf(―%d‖, &n)

for(i=0; i < n; i++) { 

for(j=0; j < n;j++) { 

for(k=0; k < n;k++) { 

temp=10*30;

}  } } }
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Cost or
Number 

Operations in the 
Statement

Repetitions or
No. of Times of 
Execution

Total

for(i=0; i < n; i++) 1+1+1 1+(n+1)+n 2n+2

for(j=0; j < n; j++) 1+1+1 (1+(n+1)+n)n 2n2+2n

for(k=0; k < n;k++) 1+1+1 ((1+(n+1)+n)n)n 2n3+2n2

temp=10*30; 1+1 ((n+n)n)n 2n3

Running Time T(n) 4n3+4n2

+4n+2

Running Time T(n)=4n3+4n2+4n+2

Cubic Time



Order of Growth (or Rate of Growth): 
Linear vs Quadratic vs Cubic

12 September 2019 CSE, BMSCE 86

Example



Interpretation of T(n)

 What is important is ―form (or shape) of
T(n)‖ i.e.., whether T(n) is Linear, Quadratic,
Cubic..etc.

 Using the expression of T(n) we may not be
able to give exact estimate but we can
interpret the behavior of the algorithm when
implemented on any computer.

 Analyzing the behavior of the algorithm for
LARGE n is important.(i.e., as n tends to
infinity n -> ∞)
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Question

Consider, you are given with 10 Aadhaar card numbers and
you are asked to sort this numbers in Ascending order.
Assume Aadhaar card numbers are available in an Notepad
file stored on computer memory. Which of the following
strategy you will use:

a. Sort by hand (or mentally) and update the file

b. Sort by writing a program
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Question

Consider, you are given with 1000 Aadhaar card numbers
and you are asked to sort this numbers in Ascending order.
Assume Aadhaar card numbers are available in an database
file stored on computer memory. Which of the following
strategy you will use:

a. Sort by hand (or mentally) and update the file

b. Sort by writing a program
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Question

Consider, you are given with 10,000 Aadhaar card numbers
and you are asked to sort this numbers in Ascending order.
Assume, Aadhaar card numbers are available in an database
file stored on computer memory.

You are given with two sorting algorithms, say the

efficiency of Algorithm1 is TA1(n)=4n+2 and

efficiency of Algorithm2 is TA2(n)=4n2+2

Which of the following strategy you will use:

a. Write a program to sort by implementing Algorithm1

b. Write a program to sort by implementing Algorithm2
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Answer

Consider, you are given with 10,000 Aadhaar card numbers and you are asked to this numbers in
Ascending order. Assume, Aadhaar card numbers are available in an database file stored on
computer memory.

You are given with two sorting algorithms, say the

efficiency of Algorithm1 is TA1(n)=4n+2 and

efficiency of Algorithm2 is TA2(n)=4n2+2

Which of the following strategy you will use:

a. Write a program to sort by implementing Algorithm1

b. Write a program to sort by implementing Algorithm2
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We can choose eitherAlgo1 or
Algo2 if it is one time sorting.
And also on modern computer
Sorting ten thousand numbers
Will not take much time because it 
will be done in fraction of seconds



Question

Consider, you are given with 10,00,000 Aadhaar card
numbers and you are asked sort to this numbers in
Ascending order. Assume, Aadhaar card numbers are
available in an database file stored on computer memory.

You are given with two sorting algorithms, say the

efficiency of Algorithm1 is TA1(n)=104n and

efficiency of Algorithm2 is TA2(n)=n2

Which of the following strategy you will use:

a. Write a program to sort by implementing Algorithm1

b. Write a program to sort by implementing Algorithm2
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Answer

Consider, you are given with 10,00,000 Aadhaar card numbers and you are asked sort
to this numbers in Ascending order. Assume, Aadhaar card numbers are available in
an database file stored on computer memory.

You are given with two sorting algorithms, say the

efficiency of Algorithm1 is TA1(n)=104n and

efficiency of Algorithm2 is TA2(n)=n2

Which of the following strategy you will use:

a. Write a program to sort by implementing Algorithm1

b. Write a program to sort by implementing Algorithm2
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For n<=104 ,104n > n2 Algo2 is better
But for n> 104    Algo1 is better



Question
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Problem

Algorithm1 Algorithm2

T(n)=500n+3 T(n)=2n2+3n+1

Which algorithm to use ?



Question
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Problem

Algorithm1 Algorithm2

T(n)=10n3+5n2+17 T(n)=2n3+3n+79

Which algorithm to use ?



Question
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Problem

Algorithm1 Algorithm2

T(n)=10n3+5n2+17 T(n)=2n3+3n+79

Which algorithm to use ?

Answer:
The above two time complexities are tedious to be judged.
Hence we will go with approximating the time complexities i.e., 
finding Out the class to which the algorithm belongs because as n tends
to infinity (n -> ∞) i.e., when n takes large values the  value of (5n2+17)
and  the value of (3n+79) will go out. Therefore we will be worrying 
about 10n3 and 2n3



Example

Consider T(n)= 6n2 + 100n + 300
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Example

Consider T(n)= 6n2 + 100n + 300
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The 6n2 term becomes larger than the remaining terms,
100n + 300,  once n becomes large enough, 20 in this case.



Example

Consider T(n)= 0.6n2 + 1000n + 3000
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Example

Consider T(n)= 0.6n2 + 1000n + 3000
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The 0.6n2 term becomes larger than the remaining terms,
1000n + 3000,  once n becomes large enough, 1700 in this case.



Explanation

For example, suppose that an algorithm, running on an input of
size n, takes 6n2 + 100n + 300 machine instructions.
The 6n2 term becomes larger than the remaining terms, 100n +
300, once n becomes large enough, 20 in this case. Here's a chart
showing values of 6n2 and 100n + 300 for values of n from 0 to
100:
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Explanation
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What is a Time Complexity/Order of Growth?

 Time Complexity/Order of Growth 
defines the amount of time taken by 
any program with respect to the size 
of the input. 

 Time Complexity specifies how the 
program would behave as the order 
of size of input is increased. So, Time 
Complexity is just a function of size of 
its input.
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Some of basic and most common time 
complexities such as:

 Constant Time Complexity: Constant running time

 Linear Time Complexity (n) : Linear running time

 Logarithmic Time Complexity (log n) : Logarithmic 
running time

 Log-Linear Time Complexity (n log n) : Log-­linear 
running time

 Polynomial Time Complexity (n^c) : Polynomial running 
time (c is a constant)

 Exponential Time Complexity (c^n) : Exponential 
running time (c is a constant being raised to a power 
based on size of input)
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What is Constant Time Complexity?

 The code that runs in fixed amount of time or has fixed number of
steps of execution no matter what is the size of input has constant
time complexity. For instance, let’s try and derive a Time Complexity
for following code:
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What is Constant Time Complexity?

 The code that runs in fixed amount of time or has fixed number of
steps of execution no matter what is the size of input has constant
time complexity. For instance, let’s try and derive a Time Complexity
for following code:

def my_sum(a, b):

return a+b

If we call this function by my_sum(2, 5) it will return 7 in 1 step. That
single step of computation is summing a and b. No matter how large is the
size of input i.e. a and b is, it will always return the sum in 1 step.

So, the Time Complexity of the above code is a Constant Time Complexity.
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What is Linear Time Complexity?

The code whose Time Complexity or Order of Growth increases linearly as 
the size of the input is increased has Linear Time Complexity. 

For instance, let’s see this code which returns the sum of a list.
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What is Linear Time Complexity?

The code whose Time Complexity or Order of Growth increases linearly as 
the size of the input is increased has Linear Time Complexity. 

For instance, let’s see this code which returns the sum of a list.

for(i=0; i < n; i++)  

temp=10*30;
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T(n)= 4n+2



What is Logarithmic Time Complexity?

 When the size of input is N but the number of steps to execute
the code is log(N), such a code is said to be executing in
Logarithmic Time. This definition is quite vague but if we take
an example, it will be quite clear.
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What is Logarithmic Time Complexity?

 When the size of input is N but the number of steps to execute
the code is log(N), such a code is said to be executing in
Logarithmic Time. This definition is quite vague but if we take
an example, it will be quite clear.

 Let’s say we have a very large number which is a power of 2
i.e. we have 2^x. We want to find x. For eg: 64 = 2^6. So x is
6.

pow(n){

x = 0

while (n > 1){

n = n/2

x = x+1}

return x }
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T(n) = log(n)



What is Log-Linear Time Complexity?

 When we call a Logarithmic Time Algorithm inside a loop, it would 
result into a Log-Linear Time Complexity program.

 For example: Let’s say we have long sorted list of size N. And we have 
Q numbers, for each of those Q numbers we have to find the index of 
it in the given list.

for i in Qlist:

print binary_search(x, search_list) #This statement is 

#executed Q times

Analyzing above code, we know that the call to Binary Search function 
takes (log N) times. We are calling it Q times. Hence the overall time 
complexity is Q(log N).
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Log Linear Time Complexity



What is Polynomial Time Complexity?

When the computation time increases as function of N raised to some 
power, N being the size of input. Such a code has Polynomial Time 
Complexity.

For example, let’s say we have a list of size N and we have nested loops on 
that list.

for i in N:

for j in N:

# Some processing

In the above code, the processing part is executed N*N times i.e. N^2 
times. Such a code has (N^2) time complexity.
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Quadratic Time Complexity



What is Exponential Time Complexity?

 When the computation time of a code increases as function of X^N, N 
being the size of input. Such a code has Polynomial Time Complexity.

 For example, following recursive code to find Nth fibonacci number has 
Time Complexity as (2^N)

def F(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return F(n-1) + F(n-2) # For every call to F, we make 2 more calls to 
F itself
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Exponential Time Complexity



-We consider only leading term in the expression T(n), since 
lower-order terms are relatively insignificant for large n.

-We are moving from Actual cost to Growth of Cost (or 
Rate of Growth).
-We are interested to know what is the term that dominates so 
that if we arbitrarily keep on increasing n that is the term 
which primarily decide how the computing time will grow.
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Order of Growth

Measuring the performance of an algorithm in 
relation with the input size n is called Order  of 
growth or Rate of Growth
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Order of growth for varying input size of n



Order of Growth

Measuring the performance of an algorithm in relation with the input size n is called 
order of growth . Some of the popular order which we will see is:-

 Order 1 : Constant.

 Order log(n) : Logarithmic

 Order (n) : linear

 Order nlog(n): log linear, occurs very often

 order (n ^ C) : polynomial

 order (C ^ n) : exponential
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Order of growth for varying input size of n



Order of Growth

Measuring the performance of an algorithm in relation with the input size n is called 
order of growth 

Some of the popular order which we will see is:-

 Order 1 : Constant.

 Order log(n) : Lograthimic

 Order (n) : liner

 Order nlog(n): log liner, occurs very often

 order (n ^ C) : polynomial

 order (C ^ n) : exponential
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Order of growth for varying input size of n



Quiz

 Which kind of growth best characterizes each of these 
functions?
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Answer

 Which kind of growth best characterizes each of these 
functions?
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Quiz

 Rank these functions according to their growth, from slowest 
growing (at the top) to fastest growing (at the bottom).
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Answer

 Rank these functions according to their growth, from slowest 
growing (at the top) to fastest growing (at the bottom).

12 September 2019 CSE, BMSCE 121



Quiz

 Rank these functions according to their growth, from 
slowest growing to fastest growing.
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Answer

 Rank these functions according to their growth, from 
slowest growing to fastest growing.
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Asymptote 

Asymptote: A straight line that continually approaches a
given curve but does not meet it at any finite distance
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Rate of Growth ordering
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Asymptotic notation

 Asymptotic notation of an algorithm is a mathematical
representation of its complexity

 In asymptotic notation, when we want to represent the complexity of an
algorithm, we use only the most significant terms in the complexity of that
algorithm and ignore least significant terms in the complexity of that
algorithm (Here complexity may be Space Complexity or Time Complexity).

For example, consider the following time complexities of two algorithms...

 Algorithm 1 : 5n2 + 2n + 1

 Algorithm 2 : 10n2 + 8n + 3

Generally, when we analyze an algorithm, we consider the time complexity for 
larger values of input data (i.e. 'n' value). In above two time complexities, for 
larger value of 'n' the term in algorithm 1 '2n + 1' has least significance than 
the term '5n2', and the term in algorithm 2 '8n + 3' has least significance than 
the term '10n2'.

Here for larger value of 'n' the value of most significant terms ( 5n2 and 10n2 ) 
is very larger than the value of least significant terms ( 2n + 1 and 8n + 3 ). So 
for larger value of 'n' we ignore the least significant terms to represent overall 
time required by an algorithm. In asymptotic notation, we use only the most 
significant terms to represent the time complexity of an algorithm.
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By dropping the less significant terms and the constant
coefficients, we can focus on the important part of an algorithm's
running time—its rate of growth—without getting mired in details
that complicate our understanding. When we drop the constant
coefficients and the less significant terms, we use asymptotic
notation.

We'll see THREE types of Asymptotic Notations:

Big - Oh (O) UPPER BOUNDING function

Big - Omega (Ω) LOWER BOUNDING function

Big - Theta (Θ) ORDER or TIGHT BOUNDING function
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Analysis of Linear Search

Algorithm SequentialSearc(A[0..n-1,K)

i=0

While i<n and A[i]!=K do

{ i=i+1 }

If i<n

return i

else

return -1
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Question:
If the Key element is in the first position of the Array then 
How many times the operation i=i+1 will be executed ?

If the Key element is in the last position of the Array then 
How many times the operation i=i+1 will be executed ?



Analysis of Linear Search

Algorithm SequentialSearc(A[0..n-1,K)

i=0

While i<n and A[i]!=K do

{ i=i+1 }

If i<n

return i

else

return -1
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Answer:
Find, if the Key element is in the first position of the Array then 
How many times the operation i=i+1 will be executed ?
Find, if the Key element is in the last position of the Array then 
How many times the operation i=i+1 will be executed ?
Find the total lower bound and upper bound (Best and Worst case) 
Running time ?  Tlower(n)=1   Tupper(n)=n



Summarizing Big-O, Big-Omega, Big-theta
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Big-O Upper Bound

no



Summarizing Big-O, Big-Omega, Big-theta
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Big-O Upper Bound Big-Omega Lower Bound

no no



Summarizing Big-O, Big-Omega, Big-theta
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Big-O Upper Bound Big-Omega Lower Bound

Big-theta
Tight bound or Order bound

no no

no



Question

Go through the following pseudocode

containsZero(arr, n){ #assume normal array of length n 

for i=1 to n {

if arr[i] == 0  return true

}

return false

What’s the lower bound or best case? Well, if the array we 
give it has 0 as the first value, it will take what time ?

What’s the worst case? If the array doesn’t contain 0, it will 
take what time
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Question

Go through the following pseudocode

containsZero(arr, n){ #assume normal array of length n 

for i=1 to n {

if arr[i] == 0  return true

}

return false

What’s the lower bound or best case? Well, if the array we 
give it has 0 as the first value, it will take what time ?

- Constant time: Ω (1)

What’s the worst case? If the array doesn’t contain 0, it will 
take what time

- It will iterate through the whole array: O(n)
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Question

Go through the following pseudocode

printNums(arr,n){

for i=1 to n {

print(arr[i]);

}

Can you think of a best case and worst case?? 
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Question

Go through the following pseudocode

printNums(arr,n){

for i=1 to n {

print(arr[i]);

}

Can you think of a best case and worst case?? 

We can’t! No matter what array we give it, we have to 
iterate through every value in the array. So the function will 
take AT LEAST n time (Ω(n)), but we also know it won’t take 
any longer than n time (O(n)). What does this mean? Our 
function will take exactly n time i.e., Θ(n)
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Asymptotic notation

To compare and rank orders of growth or 
rate of growth of the algorithms,  
Computer Scientists use three notations:
 Big - Oh (O) UPPER BOUNDING function

 Big - Omega (Ω) LOWER BOUNDING function

 Big - Theta (Θ) ORDER BOUNDING function
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Big - Oh (O) UPPER BOUNDING function: Informal Intr.

 Let us consider t(n) and g(n) are non-negative functions 
(or expressions) which take non-negative arguments.

 O(g(n)) is set of all functions with a smaller or 
same order of growth g(n) (to within a constant 
multiple, as n goes to infinity).

Ex: n ∈ O(n2) for all n>=1  
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Informal Introduction

 Let us consider t(n) and g(n) are non-negative functions 
(or expressions) which take non-negative arguments.

 O(g(n)) is set of all functions with a smaller or 
same order of growth g(n) (to within a constant 
multiple, as goes to infinity).

Ex: n ∈ O(n2) for all n>=1  
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n ∈ O(n2)  n>=1

n <= n2

n n2

1 1

2 4

3 9



Informal Introduction

 Let us consider t(n) and g(n) are non-negative functions 
(or expressions) which take non-negative arguments.

 O(g(n)) is set of all functions with a smaller or 
same order of growth g(n) (to within a constant 
multiple, as goes to infinity). 

 Ex: 100n+5 ∈ O(n2) for all n>=1000 
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Big-Oh Upper Bounding:Informal Intr.

 Let us consider t(n) and g(n) are non-negative functions 
(or expressions) which take non-negative arguments.

 O(g(n)) is set of all functions with a smaller or 
same order of growth g(n) (to within a constant 
multiple, as goes to infinity). 

 Ex: 100n+5 ∈ O(n2) for all n>=1000 
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100n+5 ∈ O(n2) 
 n>=103

100n+5 <= n2

n 100n+5 n2

102 104+5 104

103 105+5 106

104 106+5 108



Question


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Answer


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n (1/2)n(n-1) n^2

1 0 1

2 1 4

3 3 9

4 6 16

5 10 25

True for all n >=1



Question

Check which of the following statement 
is true

 n3 ∈ O(n2) 

 n3 ∉ O(n2)
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Answer

Check which of the following statement 
is true

 n3 ∈ O(n2) False 

 n3 ∉ O(n2) True
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Question

Check whether the following statement 
is true

 n4 +n + 1 ∉ O(n2)
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Answer

Check whether the following statement 
is true

 n4 +n + 1 ∉ O(n2)

True
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Big - Oh (O) UPPER BOUNDING function
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Formal Definition



Big - Oh (O) UPPER BOUNDING function

 Big - Oh notation is used to define the upper bound of an algorithm in terms 

of Time Complexity. That means Big - Oh notation always indicates the maximum 
time required by an algorithm for all input values. That means Big - Oh notation 
describes the worst case of an algorithm time complexity.

Formal Definition

 A function f(n) is said to be in O(g(n)) , denoted 

f(n) ∈ O(g(n)) (or f(n) = O(g(n))), 

if f(n) is bounded above by some constant multiple of g(n) for all 
large n, i.e., if there exist some positive constant c and some 
nonnegative integer n0 such that 

f(n) <= cg(n) for all n>=n0
(f(n) is less than or equal to cg(n) for

all values of n greater than or equal to n0)
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Big - Oh (O) UPPER BOUNDING function

 Big - Oh notation is used to define the upper bound of an algorithm in terms 

of Time Complexity. That means Big - Oh notation always indicates the maximum 
time required by an algorithm for all input values. That means Big - Oh notation 
describes the worst case of an algorithm time complexity.

Formal Definition

 A function f(n) is said to be in O(g(n)) , denoted f(n) ∈ O(g(n)) (or 

f(n) = O(g(n))), if f(n) is bounded above by some constant multiple 
of g(n) for all large n, i.e., if there exist some positive constant c and 
some nonnegative integer n0 such that 

f(n) <= cg(n) for all n>=n0
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n is Size of program's input.

f(n) Any real world function. Example: - Running time of a machine.

g(n)  Another function that we want to use as an upper-bound. Not a 
real world function but preferably simple.



Example

 Consider the following f(n) and g(n)...
f(n) = 3n + 2
g(n) = n
If we want to represent f(n) as O(g(n)) then it must 
satisfy f(n) <= Cg(n) for all values of C > 0 and n0>= 1
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Example

 Consider the following t(n) and g(n)...
f(n) = 3n + 2
g(n) = n
If we want to represent f(n) as O(g(n)) then it must satisfy f(n) <= Cg(n) for 
all values of C > 0 and n0>= 1

 f(n) <= C g(n)   ⇒ 3n + 2 <= Cn
Above condition is always TRUE for all values of C = 5 and n >= 1.

By using Big - Oh notation we can represent the time complexity as follows...
3n + 2 ∈ O(n)   or 3n + 2 = O(n)
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Example

Consider the following t(n) and g(n)...
t(n) =6*2n+ n2

g(n)=2n

Represent 6*2n+ n2 ∈ O(2n) 

C= ?? , n0= ??

i.e., 6*2n+ n2 <= C(2n) for all n >= n0
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Example

Consider the following t(n) and g(n)...
t(n) =6*2n+ n2

g(n)=2n

Represent 6*2n+ n2 ∈ O(2n) 

C=7, n0=4

i.e., 6*2n+ n2 <= 7(2n) for all n >=4
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Question

Find the values for c and n to show that 
the assertion 3n3+ 2n2 ∈ O(n3) is true 
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Question

Find the values for c and n to show that 
the assertion 3n3+ 2n2 ∈ O(n3) is true 

Answer:

 C=5, n0=1

 3n3+ 2n2 <= 5(n3) for all n >=1
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Question 

 Is the following assertion True

3n ∉ O(2n)
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Question 

 Is the following assertion True

3n ∉ O(2n)

Answer: Yes
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Question

Prove that
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Question

Prove that

 Sol. For C=3, and n0=1,
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Big - Oh Notation (O)

 Big - Oh notation is used to define the upper bound of an algorithm in terms of Time 
Complexity.
That means Big - Oh notation always indicates the maximum time required by an algorithm for 
all input values. That means Big - Oh notation describes the worst case of an algorithm time 
complexity.
Big - Oh Notation can be defined as follows...

 Consider the following graph drawn for the values of f(n) and C g(n) for input (n) value on X-
Axis and time required is on Y-Axis

 In above graph after a particular input value n0, always C g(n) is greater than f(n) which 
indicates the algorithm's upper bound.
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Big-O

 Big-O, commonly written as O, is an Asymptotic Notation for the worst 
case, or ceiling of growth for a given function. It provides us with 
an asymptotic upper bound for the growth rate of runtime of an 
algorithm. Say f(n) is your algorithm runtime, and g(n) is an arbitrary 
time complexity you are trying to relate to your algorithm. f(n) is 
O(g(n)), if for some real constants c (c > 0) and n0, f(n) <= c g(n) for 
every input size n (n > n0).

Example 1

 f(n) = 3log n + 100 g(n) = log n 

 Is f(n) =O(g(n))? Is 3 log n + 100=O(log n)? Let’s look to the 
definition of Big-O.

 3log n + 100 <= c * log n 

 Is there some pair of constants c, n0 that satisfies this for all n > n0?

 3log n + 100 <= 150 * log n, n > 2 (undefined at n = 1) 

 Yes! The definition of Big-O has been met therefore f(n) is O(g(n)).
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Big-O

 Big-O, commonly written as O, is an Asymptotic Notation for 
the worst case, or ceiling of growth for a given function. It 
provides us with an asymptotic upper bound for the growth 
rate of runtime of an algorithm. Say f(n) is your algorithm 
runtime, and g(n) is an arbitrary time complexity you are 
trying to relate to your algorithm. f(n) is O(g(n)), if for some 
real constants c (c > 0) and n0, f(n) <= c g(n) for every input 
size n (n > n0).

Example 2

 f(n) = 3*n^2 g(n) = n 

 Is f(n) O(g(n))? Is 3 * n^2 O(n)? Let’s look at the definition of 
Big-O.

 3 * n^2 <= c * n 

 Is there some pair of constants c, n0 that satisfies this for all n 
> 0? No, there isn’t. f(n) is NOT O(g(n)).
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Summarizing Big-Oh

 It would be convenient to have a form of asymptotic notation that 
means "the running time grows at most this much, but it could grow 
more slowly." We use "big-O" notation for just such occasions.

 If a running time is O(f(n)), then for large enough n, the running time 
is at most k f(n) for some constant k. Here's how to think of a running 
time that is O(f(n)):

 We say that the running time is "big-O of f(n)" or just "O of f(n)." We 
use big-O notation for asymptotic upper bounds, since it bounds the 
growth of the running time from above for large enough input sizes.
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Big - Omega (Ω) LOWER BOUNDING function
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Big - Omega (Ω) LOWER BOUNDING function

 Big - Omega notation is used to define the lower bound of an
algorithm in terms of Time Complexity. That means Big - Omega
notation always indicates the minimum time required by an
algorithm for all input values. That means Big - Omega notation
describes the best case of an algorithm time complexity.

Formal Definition

 A function f(n) is said to be in Ω(g(n)) , denoted f(n) ∈ Ω(g(n)), if f(n) 

is bounded below by some positive constant multiple of g(n) for all 
large n, i.e., if there exist some positive constant c and some 
nonnegative integer n0 such that 

f(n) >= cg(n) for all n>=n0
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Big - Omega (Ω)
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Example

 Consider the following f(n) and g(n)...
f(n) = 3n + 2
g(n) = n
If we want to represent f(n) as Ω(g(n)) then it must 
satisfy f(n) >= C g(n) for all values of C > 0 and n0>= 1
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Example

 Consider the following f(n) and g(n)...
f(n) = 3n + 2
g(n) = n
If we want to represent f(n) as Ω(g(n)) then it must 
satisfy f(n) >= C g(n) for all values of C > 0 and n0>= 1

 f(n) >= C g(n)
⇒3n + 2 >= C n

Above condition is always TRUE for all values of

C = 1 and n >= 1.

 By using Big - Omega notation we can represent the time 
complexity as follows...
3n + 2 = Ω(n)
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Example

 Consider the following f(n) and g(n)...
f(n) = n3 + 4n2

g(n) = n2

If we want to represent f(n) as Ω(g(n)) then it must satisfy

f(n) >= C g(n) for all values of C > 0 and n0>= 1
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Example

 Consider the following f(n) and g(n)...
f(n) = n3 + 4n2

g(n) = n2

If we want to represent f(n) as Ω(g(n)) then it must satisfy f(n) 
>= C g(n) for all values of C > 0 and n0>= 1

 f(n) >= C g(n)
⇒n3 + 4n2 >= C n2

Above condition is always TRUE for all values of

C = 1 and n >= 1.

 By using Big - Omega notation we can represent the time 
complexity as follows...
n3 + 4n2 = Ω(n2)
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Big-Oh and Big-Omega

 Big-Oh

 Think of it this way. Suppose you have 10 rupees in your 
pocket. You go up to your friend and say, "I have an amount of 
money in my pocket, and I guarantee that it's no more than 
one thousand rupees." Your statement is absolutely true, 
though not terribly precise.

 Big-Omega

 For example, if you really do have a one thousand rupees in 
your pocket, you can truthfully say "I have an amount of 
money in my pocket, and it's at least 10 rupees." That is 
correct, but certainly not very precise.
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Big - Theta (Θ) ORDER BOUNDING function
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Big - Theta (Θ) ORDER BOUNDING function

 Big - Theta notation is used to define the average bound of an 
algorithm in terms of Time Complexity. That means Big - Theta 
notation always indicates the average time required by an algorithm 
for all input values. That means Big - Theta notation describes the 
average case of an algorithm time complexity.

Formal Definition

 A function f(n) is said to be in Θ(g(n)) , denoted f(n) ∈ Θ(g(n)), if f(n) 

is bounded above and below by some positive constant multiple of g(n) 
for all large n, i.e., if there exist some positive constant c1 and c2 and 
some nonnegative integer n0 such that 

c1g(n) <= f(n) <= c2g(n) for all n>=n0
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Example

 Consider the following f(n) and g(n)...
f(n) = 3n + 2
g(n) = n
If we want to represent f(n) as Θ(g(n)) then it must 
satisfy C1 g(n) <= f(n) <= C2 g(n) for all values of C1, 
C2 > 0 and n0>= 1
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Example

 Consider the following f(n) and g(n)...
f(n) = 3n + 2
g(n) = n
If we want to represent f(n) as Θ(g(n)) then it must 
satisfy C2 g(n) <= f(n) <= C1 g(n) for all values of C1, 
C2 > 0 and n0>= 1

 C1 g(n) <= f(n) <= C2 g(n) ⇒
C1 n <= 3n + 2 <= C2 n

Above condition is always TRUE for all values of C1 = 1, 
C2 = 5 and n >= 1.
By using Big - Theta notation we can represent the time 
complexity as follows...
3n + 2 = Θ(n)
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Example

 Consider the following f(n) and g(n)...
f(n) = 10n3+5

g(n) = n3

If we want to represent f(n) as Θ(g(n)) then it must 
satisfy C2 g(n) <= f(n) <= C1 g(n) for all values of C1, 
C2 > 0 and n0>= 1
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Example

 Consider the following f(n) and g(n)...
f(n) = 10n3+5

g(n) = n3

If we want to represent f(n) as Θ(g(n)) then it must 
satisfy C1 g(n) <= f(n) <= C2 g(n) for all values of C1, 
C2 > 0 and n0>= 1

 C1 g(n) <= f(n) <= C2 g(n) ⇒
C1 n3 <= 10n3+5 <= C2 n3

Above condition is always TRUE for all values of

C1 = 10, C2 = 11 and n >= 2.
By using Big - Theta notation we can represent the time 
complexity as follows...
10n3+5 = Θ(n3)
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Big - Oh (O) UPPER BOUNDING function

Big - Omega (Ω) LOWER BOUNDING function

Big - Theta (Θ) ORDER BOUNDING function
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Summarizing:
Formal Definitions of Asymptotic Notations



Big - Oh (O) UPPER BOUNDING function

 Big - Oh notation is used to define the upper bound of an algorithm in terms 

of Time Complexity. That means Big - Oh notation always indicates the maximum 
time required by an algorithm for all input values. That means Big - Oh notation 
describes the worst case of an algorithm time complexity.

Formal Definition

 A function f(n) is said to be in O(g(n)) , denoted f(n) ∈ O(g(n)) (or 

f(n) = O(g(n))), if f(n) is bounded above by some constant multiple 
of g(n) for all large n, i.e., if there exist some positive constant c and 
some nonnegative integer n0 such that 

f(n) <= cg(n) for all n>=n0
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n is Size of program's input.

t(n) Any real world function. Example: - Running time of a machine.

g(n)  Another function that we want to use as an upper-bound. Not a 
real world function but preferably simple.



Big - Omega (Ω) LOWER BOUNDING function

 Big - Omega notation is used to define the lower bound of an
algorithm in terms of Time Complexity. That means Big - Omega
notation always indicates the minimum time required by an
algorithm for all input values. That means Big - Omega notation
describes the best case of an algorithm time complexity.

Formal Definition

 A function f(n) is said to be in Ω(g(n)) , denoted f(n) ∈ Ω(g(n)), if f(n) 

is bounded below by some positive constant multiple of g(n) for all 
large n, i.e., if there exist some positive constant c and some 
nonnegative integer n0 such that 

f(n) >= cg(n) for all n>=n0
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Big - Theta (Θ) ORDER BOUNDING function

 Big - Theta notation is used to define the average bound of an 
algorithm in terms of Time Complexity. That means Big - Theta 
notation always indicates the average time required by an algorithm 
for all input values. That means Big - Theta notation describes the 
average case of an algorithm time complexity.

Formal Definition

 A function f(n) is said to be in Θ(g(n)) , denoted f(n) ∈ Θ(g(n)), if f(n) 

is bounded above and below by some positive constant multiple of g(n) 
for all large n, i.e., if there exist some positive constant c1 and c2 and 
some nonnegative integer n0 such that 

c1g(n) <= f(n) <= c2g(n) for all n>=n0
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Question

Let us consider the problem of finding the minimum of an 
array x[1..n]. The input size is n and the corresponding 
algorithm can be described as follows:

In the given algorithm above, how many times the fourth 
operation  (m=x[i])  will be executed if the given array (x) is 
having elements in ascending order ?

12 September 2019 CSE, BMSCE 183



Answer

Let us consider the problem of finding the minimum of an 
array x[1..n]. The input size is n and the corresponding 
algorithm can be described as follows:

In the given algorithm above, how many times the fourth 
operation  (m=x[i])  will be executed if the given array (x) is 
having elements in ascending order ?
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It will not get executed

Best Case (Lower Bound)
T(n) = 0



Question

Let us consider the problem of finding the minimum of an 
array x[1..n]. The input size is n and the corresponding 
algorithm can be described as follows:

In the given algorithm above, how many times the fourth 
operation  (m=x[i])  will be executed if the given array (x) is 
having elements in Descending order ?
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Answer

Let us consider the problem of finding the minimum of an 
array x[1..n]. The input size is n and the corresponding 
algorithm can be described as follows:

In the given algorithm above, how many times the fourth 
operation  (m=x[i])  will be executed if the given array (x) is 
having elements in Descending order ?
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It will get executed (n-1) times

Worst Case (Upper bound)
T(n) = (n-1)



Best and Worst case

Unlike in previous examples we cannot find a general expression for the 
running time. This happens because the running time of the fourth 
operation does not depend only on the input size but also on the properties 
of the array (mainly on the position where the minimal value appears for 
the first time). 

If the minimum is on the first position then the assignment 4 is not at all 
executed, τ (n) = 0. This is the best case which could appear. 

If, on the other hand, the array is decreasingly sorted the assignment 4 is 
executed at each iteration. Thus τ(n) = n − 1. This is the worst case. 

Taking into consideration the best and the worst case we can 
establish a lower and an upper bound for the running time: 

3n ≤ T(n) ≤ 4n−1. It is easy to see that both bounds depend 
linearly on the input size.
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Example
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Example
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Example

12 September 2019 CSE, BMSCE 190



Question: What is the running time of this code ?
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Answer
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Question: What is the running time of this code ?
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Answer
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Question
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Question
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Answer



Question

 For the functions, nk and c​n​c, what is the 

asymptotic relationship between these 
functions? Assume that k >= 1 and c > 1 are 
constants.

 n ​k is O(cn)

 n ​k is Ω(c​n​​)

 n ​k is Θ(c​n​​)
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Answer

For the functions, nk and c​n​c, what is the asymptotic relationship 

between these functions? Assume that k >= 1 and c > 1 are 
constants.

 n ​k is O(cn)

 n ​k is Ω(c​n​​)

 n ​k is Θ(c ​n​​)

n​k ​​ is a polynomial function, and cn is a exponential function. We know that polynomials 

always grow more slowly than exponentials. We could prove that with a graph, but we 
have to make sure we look at it for big values of n, because the early behavior could 
be misleading. Here's a graph that compares the two functions (with k=2 and c=2), 
where we can clearly see the difference in growth:

12 September 2019 CSE, BMSCE 198



Question
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Question
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Question

Consider the following three claims

Which of these claims are correct ?

(A) 1 and 2        (B) 1 and 3
(C) 2 and 3        (D) 1, 2, and 3
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Question

Consider the following three claims

Which of these claims are correct ?

(A) 1 and 2        (B) 1 and 3
(C) 2 and 3        (D) 1, 2, and 3

Answer:(A)
Explanation: (n + k)m and Θ(nm) are asymptotically same as 
theta notation can always be written by taking the leading order 
term in a polynomial expression.

2n + 1 and O(2n) are also asymptotically same as 2n + 1 can be 
written as 2 * 2n and constant multiplication/addition doesn’t 
matter.

22n + 1 and O(2n) are not same as constant is in power.
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Question
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Question
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Answer
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In conclusion, all of the statements are true.



Useful Property Involving the Asymptotic Notations
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Useful Property Involving the Asymptotic Notations (Contd…)
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Using Limits for Comparing Orders of Growth

 Though the formal definitions of O, Ω and Θ are  
indispensable for proving their abstract properties, they 
are rarely used for comparing the orders of growth of 
two specific functions. A much more convenient method 
for doing so is based on computing the limit of the ratio 
of two functions in question. Three principal cases may 
arise:
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Example
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Problem
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Thanks for Listening
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Quiz

 Match each function with an equivalent function, in 
terms of their Θ. Only match a function if f(n) = Θ(g(n)).
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 Given N distinct integers, how many 
triples sum to exactly zero?
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Brute-force algorithm
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Program Performance

 Program performance is the amount 
of computer memory and time 
needed to run a program.

 How is it determined?
1. Analytically
 performance analysis

2. Experimentally
 performance measurement
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Criteria for Measurement

 Space
 amount of memory program occupies

 usually measured in bytes, KB or MB

 Time
 execution time

 usually measured by the number of 
executions
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Components of Program Space

 Program space = Instruction space + 
data space + stack space

 The instruction space is dependent 
on several factors.
 the compiler that generates the machine 

code

 the compiler options that were set at 
compilation time

 the target computer
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Components of Program Space

 Data space

 very much dependent on the computer 
architecture and compiler

 The magnitude of the data that a 
program works with is another factor

char 1 float 4
short 2 double 8
int 2 long double 10
long 4 pointer 2

Unit: bytes
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Components of Program Space

 Environment Stack Space
 Every time a function is called, the 

following data are saved on the stack.
1. the return address

2. the values of all local variables and value 
formal parameters

3. the binding of all reference and const
reference parameters

 What is the impact of recursive function 
calls on the environment stack space?
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int mean(int a[], size_t n)

{

int sum = 0; // 1 step * 1

for (int i = 0; i < n; i++) // 1 step * (N+1)

sum += a[i]; // 1 step * N

return sum; // 1 step * 1

}

 Add up the steps: 1 + (N+1) + N + 1

 Reduce: 2N + 3
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Quiz: Running time of binary search

32 teams qualified for the 2014 World Cup. If the 
names of the teams were arranged in sorted order 
(an array), how many items in the array would 
binary search have to examine to find the location 
of a particular team in the array, in the worst 
case?

A. At most, 1

B. At most, 16

C. At most, 6

D. At most, 32
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Quiz: Running time of binary search

What is lg(32), the base-2 logarithm of 
32?

A. 5

B. 32

C. 16

D. 1
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Quiz: Running time of binary search

You have an array containing the prime numbers from 2 to 
311 in sorted order: [2, 3, 5, 7, 11, 13, ..., 307, 311]. There 
are 64 items in the array. About how many items of the 
array would binary search have to examine before 
concluding that 52 is not in the array, and therefore not 
prime?

A. 32

B. 11

C. 64

D. 128

E. 22

F. 1

G. 7
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 Suppose you have the following 
sorted list [3, 5, 6, 8, 11, 12, 14, 15, 
17, 18] and are using the recursive 
binary search algorithm. Which group 
of numbers correctly shows the 
sequence of comparisons used to find 
the key 8.

 (A) 11, 5, 6, 8
(B) 12, 6, 11, 8
(C) 3, 5, 6, 8
(D) 18, 12, 6, 8
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 Suppose you have the following 
sorted list [3, 5, 6, 8, 11, 12, 14, 15, 
17, 18] and are using the recursive 
binary search algorithm. Which group 
of numbers correctly shows the 
sequence of comparisons used to 
search for the key 16?(A) 11, 14, 17
(B) 18, 17, 15
(C) 14, 17, 15
(D) 12, 17, 15
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Pseudocode for (Euclid’s Algorithm), 
gcd(m, n)

ALGORITHM Euclid(m, n)

// Computes gcd(m, n) by Euclid’s algorithm

// Input: Two nonnegative, not-both-zero integers m and n

//Output: Greatest common divisor of m and n

while n ≠ 0 do

r = m mod n

m = n

n = r

return m
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What happens if m < n ?

gcd(m, n) = gcd(n, m mod n)
gcd(24, 60) = gcd(60, 24 mod 60)

What is the minimum number of divisions 
among all inputs 1 ≤ m, n ≤ 10 ?



Second try: Consecutive Integer Checking, 
gcd(m, n)

 Step 1: Assign the value of min{m, n} to q.

 Step 2: Divide m by q. If the remainder is 0, 
go to Step 3; otherwise, go to Step 4.

 Step 3: Divide n by q. If the remainder is 0, 
return the value of q as the answer and stop; 
otherwise, proceed to Step 4.

 Step 4: Decrease the value of q by 1. Go to 
Step 2.

Which one is faster, Euclid’s or this one ?
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Does it work when m or n is 0 ?



Third try: Middle-school, gcd(m, n)

 Step 1: Find prime factors of m.

 Step 2: Find prime factors of n.

 Step 3: Identify all common prime factors of 
m and n (if p is a prime factor occurring pm

and pn times in m and n, it should be 
repeated min{pm,pn} times)

 Step 4: Compute product of all common 

factors and return product as the answer.

Is it legitimate algorithm?
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Test Your Knowledge

 Find Time Complexity of the following Algorithm

 Thus the running time can be computed by using the following 
costs table:

 The overall cost will be: T(m, n, p) = 4mnp + 5mp + 4m + 2.
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