
Course – Analysis and Design of
Algorithms

Course Instructor

Dr. Umadevi V

Department of CSE, BMSCE
Webpage:https://sites.google.com/site/drvumadevi/

12 September 2019 CSE, BMSCE 1

Unit 1:

- Mathematical analysis of Non-recursive and
Recursive Algorithms

- Brute Force technique
- Exhaustive search

12 September 2019 CSE, BMSCE 2

Unit 1: Mathematical analysis of Non-
recursive Algorithms

- General framework for analyzing time efficiency of
Non-Recursive algorithms

12 September 2019 CSE, BMSCE 3

Theoretical analysis of time efficiency

 Time efficiency is analyzed by determining the number of
repetitions of the basic operation as a function of input size.

 Basic operation: the operation that contributes most towards
the running time of the algorithm.

 An algorithm to solve a particular task employs some set of basic operations.
When we estimate the amount of work done by an algorithm we usually do not
consider all the steps such as e.g. initializing certain variables. Generally, the
total number of steps is roughly proportional to the number of the basic
operations. Thus, we are concerned mainly with the basic operations - how many
times the basic operations have to be performed depending on the size of input.

12 September 2019 CSE, BMSCE 4

Input size and Basic Operation examples

12 September 2019 CSE, BMSCE 5

Problem Input Size Basic Operation

Search for key in
list of n items

Number of items
in list n

Comparison of
Key element with
Array element

Sort an array of
numbers

The number of
elements in the
array

Comparison of
two array entries

Multiply two
matrices of
floating point
numbers

Dimensions of
matrices

Floating point
multiplication

Compute an n Floating point
multiplication

Graph problem Number of
vertices and
edges

Visiting a vertex
or traversing an
edge

Example: Maximum element in an Array

12 September 2019 CSE, BMSCE 6

Example: Maximum element in an Array

 Basic Operation: Comparison operation A[i] > maxval
 Let us denote T(n) the number of times this comparison is executed and try to find a formula

expressing it as a function of size n. The algorithm makes one comparison on each execution
of the loop, which is repeated for each value of the loop‘s variable i within the bounds

1 and n − 1, inclusive. Therefore, we get the following sum for

T(n) =

This is an easy sum to compute because it is nothing other than 1 repeated n − 1 times. Thus,

T(n) =

12 September 2019 CSE, BMSCE 7

Mathematical analysis of nonrecursive algorithms

Steps in mathematical analysis of nonrecursive
algorithms:

 Decide on parameter n indicating input size

 Identify algorithm‘s basic operation

 Determine worst, average, and best case for
input of size n

 Set up summation for C(n) reflecting
algorithm‘s loop structure

 Simplify summation using standard formulas

12 September 2019 CSE, BMSCE 8

Useful Formulas for the Analysis of Algorithms

12 September 2019 CSE, BMSCE 9

Commonly used sum manipulation rules and
Summation formulas

 Two frequently used basic rules of sum
manipulation

 Summation Formulas

12 September 2019 CSE, BMSCE 10

Question

Consider the Algorithm

ALGORITHM Sum(n)

// Input: A nonnegative integer(n)

S = 0

for i =1 to n do

S = S + i

return S

a. What does this algorithm compute?

b. Considering the, basic operation as ―S =S + i ―, Find out how many
times the basic operation will be executed?

c. What is the efficiency class of this algorithm?

12 September 2019 CSE, BMSCE 11

Answer

Consider the Algorithm

ALGORITHM Sum(n)

// Input: A nonnegative integer(n)

S = 0

for i =1 to n do

S = S + i

return S

a. What does this algorithm compute?

b. Considering the, basic operation as ―S =S + i ―, Find out how many
times the basic operation will be executed?

c. What is the efficiency class of this algorithm?

Answer:

a.Computes the sum of the first n numbers

b.Number of executions of basic operation ―S= S + ‖ is n

d. The basic operation is always (worst, average, best case) executed n
times, so it's Θ(n).

12 September 2019 CSE, BMSCE 12

Example: Finding the Maximum and Minimum Element in an array

a. What does this algorithm compute?

b. Considering the basic operation as ―A[i] < minval and A[i]
> maxval‖ , find out how many times the basic operations
will be executed?

c. What is the efficiency class of this algorithm?

12 September 2019 CSE, BMSCE 13

Answer



12 September 2019 CSE, BMSCE 14

Question

 In the following code find out how many times
the sum++ will be executed

sum = 0;

for(i = 1; i <= n; i++) {

for(j = 1; j <= n; j++)

{ sum++; }

}

12 September 2019 CSE, BMSCE 15

Answer



12 September 2019 CSE, BMSCE 16

Example: Checking all elements in an array are distinct

 Element uniqueness problem: check whether all the
elements in a given array of n elements are distinct.

12 September 2019 CSE, BMSCE 17

Example: Checking all elements in an array are
distinct

 Element uniqueness problem: check whether all the
elements in a given array of n elements are distinct.

12 September 2019 CSE, BMSCE 18

T(n)

Question

In a competition, four different functions are observed. All the
functions use a single for loop and within the for loop, same set of
statements are executed. Consider the following for loops:

A) for(i = 0; i < n; i++)

B) for(i = 0; i < n; i += 2)

C) for(i = 1; i < n; i *= 2)

D) for(i = n; i > -1; i /= 2)

If n is the size of input(positive), which function is most efficient(if
the task to be performed is not an issue)?

12 September 2019 CSE, BMSCE 19

Question

In a competition, four different functions are observed. All the
functions use a single for loop and within the for loop, same set of
statements are executed. Consider the following for loops:

A) for(i = 0; i < n; i++)

B) for(i = 0; i < n; i += 2)

C) for(i = 1; i < n; i *= 2)

D) for(i = n; i > -1; i /= 2)

If n is the size of input(positive), which function is most efficient(if
the task to be performed is not an issue)?

Answer: (C)
Explanation: The time complexity of first for loop is Θ(n).
The time complexity of second for loop is Θ(n/2), equivalent to
Θ(n) in asymptotic analysis.
The time complexity of third for loop is Θ(logn).
The fourth for loop doesn‘t terminate.

12 September 2019 CSE, BMSCE 20

Question

i. Find out how many times the statement ―printf(―*‖);‖ will be executed
for the following code

ii. What is the Time Complexity of this code ?

function(int n)

{

if (n==1)

return;

for (int i=1; i<=n; i++)

{

for (int j=1; j<=n; j++)

{

printf("*");

break;

}

}

}

12 September 2019 CSE, BMSCE 21

Answer

i. Find out how many times the statement ―printf(―*‖);‖ will be executed
for the following code

ii. What is the Time Complexity of this code ?

function(int n)

{ if (n==1)

return;

for (int i=1; i<=n; i++)

{

// Inner loop executes only one time due to break statement.

for (int j=1; j<=n; j++)

{ printf("*");

break;

}

}

}

Time Complexity of the above function Θ(n). Even though the inner loop is
bounded by n, but due to break statement it is executing only once.

12 September 2019 CSE, BMSCE 22

Question

 In the following code find out how many times
the sum++ will be executed

12 September 2019 CSE, BMSCE 23

Answer

12 September 2019 CSE, BMSCE 24

Question: Study the given algorithm

ALGORITHM Mystery(n)
//Input: A nonnegative integer n
S ←0
for i ←1 to n do

S ←S + i ∗ i

return S

Answer the following questions

a. What does this algorithm compute?
b. What is its basic operation?
c. How many times is the basic operation executed?
d. What is the efficiency class of this algorithm?
e. Suggest an improvement, or a better algorithm altogether,

and indicate its
efficiency class. If you cannot do it, try to prove that, in fact, it

cannot be
done.

Question

Consider the following function

Void unknown(int n) {

int i, j, k = 0;

for (i = n/2; i <= n; i++)

for (j = 2; j <= n; j = j * 2)

k = k + n/2;

}

How many times the statement ―k=k+n/2‖ will be executed

Answer

The outer loop runs n/2 or Theta(n) times.

The inner loop runs (Logn) times (Note that j is multiplied by 2 in
every iteration).

So the statement "k = k + n/2;" runs Theta(nLogn) times.

12 September 2019 CSE, BMSCE 26

Exercise 2: Study the given algorithm

ALGORITHM Mystery(n)
//Input: A nonnegative integer n
S ←0
for i ←1 to n do

S ←S + i ∗ i

return S

Answer the following questions

a. What does this algorithm compute? Computes the series 12

+ 22 + + n2

b. What is its basic operation? Multiplication (i * i)
c. How many times is the basic operation executed? n times

d. What is the efficiency class of this algorithm? Θ(n)
e. Suggest an improvement, or a better algorithm altogether,

and indicate its efficiency class. If you cannot do it, try to
prove that, in fact, it cannot be done.

S = n (n + 1) (2n + 1) / 6, multiplication is done only three
times

Homework Problem

 In the following code find out how many times
the sum++ will be executed

sum = 0;

for(i = 1; i <= n; i++)

for(j = i; j <= n; j++)

sum++;

12 September 2019 CSE, BMSCE 28

inin
n

i

n

i

n

i

n

ij

n

i 1111

)1()1(1

2

2

)1(

2

)1(
)1(n

nnnn
nn

Homework Problem

 In the following code find out how many times
the sum++ will be executed

sum = 0;

for(i = 1; i <= n; i++)

for(j = 1; j <= 2n; j++)

sum++;

12 September 2019 CSE, BMSCE 29

Homework Problem

In the following code find out how
many times the sum++ will be
executed

sum = 0;

for(i = 0; i < n; i++)

for(j = 0; j < i*i; j++)

for(k = 0; k < j; k++)

sum++;

12 September 2019 CSE, BMSCE 30

Example: Two matrix Multiplication

 Given two n × n matrices A and B, find the time efficiency of the
definition-based algorithm for computing their product C = AB

12 September 2019 CSE, BMSCE 31

Example: Two matrix Multiplication

 Given two n × n matrices A and B, find the time efficiency of the
definition-based algorithm for computing their product C = AB

12 September 2019 CSE, BMSCE 32

T(n) = = Θ(n3)

Example: Counting binary digits in binary representation of
a decimal number

The following algorithm finds the number of binary digits in the

binary representation of a positive decimal integer.

12 September 2019 CSE, BMSCE 33

Example: Counting binary digits in binary representation of
a decimal number

The following algorithm finds the number of binary digits in the

binary representation of a positive decimal integer.

12 September 2019 CSE, BMSCE 34

C(n) = n -> (n/2) -> (n/4) -> ………1 =

Number of times n> 1 gets executed is

Example: Counting binary digits in binary representation of
a decimal number

The following algorithm finds the number of binary digits in the

binary representation of a positive decimal integer.

12 September 2019 CSE, BMSCE 35

Consecutive program fragments

 The total running time is the maximum of the running
time of the individual fragments

sum = 0;

for(i = 0; i < n; i++)

sum = sum + i;

sum = 0;

for(i = 0; i < n; i++)

for(j = 0; j < 2n; j++)

sum++;

The first loop runs in Θ (n) time,

the second Θ (n2) time, the maximum is Θ (n2)

12 September 2019 CSE, BMSCE 36

Unit 1: Mathematical analysis of
Recursive Algorithms

- General framework for analyzing time efficiency of
Recursive algorithms

12 September 2019 CSE, BMSCE 37

Time efficiency of recursive algorithms

Steps in mathematical analysis of recursive algorithms:

 Decide on parameter n indicating input size

 Identify algorithm‘s basic operation

 Determine worst, average, and best case for input of
size n

 Set up a recurrence relation and initial condition(s) for
T(n)-the number of times the basic operation will be
executed for an input of size n (alternatively count
recursive calls).

 Solve the recurrence to obtain a closed form or estimate
the order of magnitude of the solution

12 September 2019 CSE, BMSCE 38

Example: Factorial

- Analysis of recursive algorithm to find factorial of
a given number

12 September 2019 CSE, BMSCE 39

Example: Factorial

 Compute the factorial function F (n) = n! for an
arbitrary nonneg-ative integer n.Since

n! = 1 * 2 * ... *(n − 1) *n = (n − 1)! . n for n ≥ 1

and 0! = 1 by definition, we can compute

 F(n) = F(n − 1) . n with the following recursive
algorithm.

12 September 2019 CSE, BMSCE 40

Example: Factorial

 Compute the factorial function F (n) = n! for an
arbitrary nonneg-ative integer n.Since

n! = 1 * 2 * ... *(n − 1) *n = (n − 1)! . n for n ≥ 1

and 0! = 1 by definition, we can compute

 F(n) = F(n − 1) . n with the following recursive
algorithm.

12 September 2019 CSE, BMSCE 41

Example: Factorial

 The basic operation of the algorithm is multiplication,
whose number of executions we denote M(n).

12 September 2019 CSE, BMSCE 42

Example: Factorial

Recurrence relation and initial condition for the algorithm‘s
number of multiplications M(n):

12 September 2019 CSE, BMSCE 43

Example: Factorial

Solving the above recurrence relation using the
method of backward substitutions.

12 September 2019 CSE, BMSCE 44

Question

 Solve the following recurrence
relations using Substitution method

12 September 2019 CSE, BMSCE 45

Question

 Solve the following recurrence
relations using Substitution method

12 September 2019 CSE, BMSCE 46

Answer

12 September 2019 CSE, BMSCE 47

Question

Solve the following recurrence relation

12 September 2019 CSE, BMSCE 48

Answer

12 September 2019 CSE, BMSCE 49

Question

12 September 2019 CSE, BMSCE 50

Answer

12 September 2019 CSE, BMSCE 51

HomeWork Problem to Solve

12 September 2019 CSE, BMSCE 52

Answer

12 September 2019 CSE, BMSCE 53

Example 2:

- Towers of Hanoi

12 September 2019 CSE, BMSCE 54

Example: Tower of Hanoi

 There are three pegs, Source(A), Auxiliary(B) and
Destination(C). Peg A contains a set of disks stacked to
resemble a tower, with the largest disk at the bottom and the
smallest disk at the top. The objective is to transfer the entire
tower of disks in peg A to peg C maintaining the same order of
the disks.

Obeying the following rules:

 Only one disk can be transfer at a time.

 Each move consists of taking the upper disk from one of the
peg and placing it on the top of another peg i.e. a disk can only
be moved if it is the uppermost disk of the peg.

 Never a larger disk is placed on a smaller disk during the
transfer.

12 September 2019 CSE, BMSCE 55

Tower of Hanoi: 3 Discs

12 September 2019 CSE, BMSCE 56

Towers of Hanoi: Recursive

 Move (n-1) discs from the source post to the auxiliary post.

 Move the last disc to the destination post.

 Move (n-1) discs back from the auxiliary post to the
destination post.

12 September 2019 CSE, BMSCE 57

Source Aux Destination

Towers of Hanoi: Recursive

Algorithm TowerHanoi(n, source, dest, aux)

IF n == 1, THEN

move disk from source to dest

ELSE

TowerHanoi(n - 1, source, aux, dest)

move disk from source to dest

TowerHanoi(n - 1, aux, dest, source)

END IF

END

12 September 2019 CSE, BMSCE 58

Towers of Hanoi: Recursive

Algorithm TowerHanoi(n, source, dest, aux)

IF n == 1, THEN

move disk from source to dest

ELSE

TowerHanoi(n - 1, source, aux, dest)

move disk from source to dest

TowerHanoi(n - 1, aux, dest, source)

END IF

END

The number of disks n is the obvious choice for the input‘s size indicator,
and so is moving one disk as the algorithm‘s basic operation. Clearly, the
number of moves M(n) depends on n only, and we get the following
recurrence equation for it:

M(n) = M(n − 1) + 1+ M(n − 1) for n > 1.

With the obvious initial condition M(1) = 1, we have the following
recurrence relation for the number of moves M(n):

M(n) = 2M(n − 1) + 1 for n > 1

M(1) = 1 for n=1

12 September 2019 CSE, BMSCE 59

Towers of Hanoi: Recursive



12 September 2019 CSE, BMSCE 60

M(n) =2*2n-1 -1
=2*(2n/2)-1

Towers of Hanoi: Recursive

 Tree of recursive calls made by the recursive algorithm
for the Tower of Hanoi puzzle.

 When a recursive algorithm makes more than a single call to itself, it can be
useful for analysis purposes to construct a tree of its recursive calls. In this tree,
nodes correspond to recursive calls, and we can label them with the value of the
parameter (or, more generally, parameters) of the calls. For the Tower of Hanoi
example, the tree is given in Figure 2.5. By counting the number of nodes in the
tree, we can get the total number of calls made by the Tower of Hanoi algorithm:

12 September 2019 CSE, BMSCE 61

Towers of Hanoi: Recursive

 Tree of recursive calls made by the recursive algorithm for the
Tower of Hanoi puzzle.

The number of nodes at level 0 = 20 = 1

The number of nodes at level 1 = 21 = 2

The number of nodes at level 2 = 22 = 4

………..

The number of nodes at level (n-1) = 2(n-1)

Total number of calls made by Towers of Hanoi:

C(n)=20 + 21 +22+…….+2(n-1)=2n-1

12 September 2019 CSE, BMSCE 62

Example 3:

- Counting bits in the binary representation of an
decimal number

12 September 2019 CSE, BMSCE 63

Counting bits in the binary representation of an
decimal number

 Recursive Algorithms

12 September 2019 CSE, BMSCE 64

Counting bits in the binary representation of an
decimal number

 Recursive Algorithms

12 September 2019 CSE, BMSCE 65

Solving the Recurrence Relation

12 September 2019 CSE, BMSCE 66

Homework Problem

12 September 2019 CSE, BMSCE 67

Consider the basic operation as Two multiplications and One Addition
in the statement ―s(n-1)+n*n*n‖

Answer

12 September 2019 CSE, BMSCE 68

Algorithm Design Techniques

Various design techniques exist:

 Classifying algorithms based on design ideas or
commonality

 General problem solving strategies

 Brute force

 Divide-and-Conquer

 Decrease-and-Conquer

 Dynamic Programming

 Greedy technique

 Back tracking

12 September 2019 CSE, BMSCE 69

Brute Force Technique

Sorting
- Selection Sort
- Bubble Sort
Search
- Sequential Search
- String-Matching problem (or String pattern

search)

12 September 2019 CSE, BMSCE 70

Brute Force Technique

 Brute Force – the simplest of the design strategies

 Is a straight forward approach to solving a problem,
usually directly based on the problem’s statement
and definition of the concepts involved.

 Just do it – the brute-force strategy is easiest to apply

 Results in an algorithm that can be improved with a
modest amount of time

12 September 2019 CSE, BMSCE 71

Brute Force Technique

Selection sort: repeatedly pick the smallest element to append
to the result.

Selection sort is to repetitively pick up the smallest
element and put it into the correct position:

 Find the smallest element, and put it to the first position.

 Find the next smallest element, and put it to the second
position.

 Repeat until all elements are in the correct positions.

12 September 2019 CSE, BMSCE 72

Selection Sort

Scan the list repeatedly to find the elements, one at a time,
in an nondecreasing order

 On the ith pass through the list, search for the smallest
item among the last (n-i) elements and swap it with A[i].
After (n-1) passes the list is sorted.

 Selection Sort algorithm is used to arrange a list of elements in a particular order
(Ascending or Descending). In selection sort, the first element in the list is
selected and it is compared repeatedly with remaining all the elements in the list.
If any element is smaller than the selected element (for Ascending order), then
both are swapped. Then we select the element at second position in the list and
it is compared with remaining all elements in the list. If any element is smaller
than the selected element, then both are swapped.

12 September 2019 CSE, BMSCE 73

Example: Selection Sort

12 September 2019 CSE, BMSCE 74

Example: Selection Sort

12 September 2019 CSE, BMSCE 75

Selection Sort Algorithm

ALGORITHM SelectionSort(A[0..n − 1])

//Sorts a given array by selection sort

//Input: An array A[0..n − 1] of orderable elements

//Output: Array A[0..n − 1] sorted in nondecreasing order

for i ←0 to n − 2 {

min←i

for j ←i + 1 to n − 1 {

if A[j]<A[min]

min←j

}

swap A[i] and A[min]

}

12 September 2019 CSE, BMSCE 76

Question

 Sort the elements 89, 45, 68, 90, 29,
34, 17 using selection sort

12 September 2019 CSE, BMSCE 77

Answer

 Sort the elements 89, 45, 68, 90, 29,
34, 17 using selection sort

12 September 2019 CSE, BMSCE 78

Question

 Sort the list ―E X A M P L E‖ in alphabetical order by
selection sort.

12 September 2019 CSE, BMSCE 79

Analysis of Selection Sort



12 September 2019 CSE, BMSCE 80

Question

If there are n elements to be sorted using
Selection Sort then how many Swap operations
will be carried out.

12 September 2019 CSE, BMSCE 81

Answer

If there are n elements to be sorted using
Selection Sort then how many Swap operations
will be carried out.

 Answer: The number of key swaps is only(n),
or, more precisely, n − 1(one for each
repetition of the i loop).This property
distinguishes selection sort positively from
many other sorting algorithms.

12 September 2019 CSE, BMSCE 82

Brute Force Technique

Sorting
- Selection Sort
- Bubble Sort
Search
- Sequential Search
- String-Matching problem (or String pattern

search)

12 September 2019 CSE, BMSCE 83

Brute Force Technique

- Bubble sort: repeatedly compare neighbor pairs and swap if
necessary.

Bubble sort repetitively compares adjacent pairs of elements and
swaps if necessary.

 Scan the array, swapping adjacent pair of elements if they are
out of order. This bubbles up the largest element to the end.

 Scan the array again, bubbling up the second largest element.

 Repeat until all elements are in order.

12 September 2019 CSE, BMSCE 84

Bubble Sort

 Comparing adjacent elements of the list and
exchange them if they are out of order.

 By doing it repeatedly, we end up ―bubbling
up‖ the largest element to the last position on
the list.

 The next pass bubbles up the second largest
element, and so on, until after n − 1 passes
the list is sorted.

12 September 2019 CSE, BMSCE 85

Bubble Sort Algorithm

ALGORITHM BubbleSort(A[0..n − 1])

//Sorts a given array by bubble sort

//Input: An array A[0..n − 1] of orderable elements

//Output: Array A[0..n − 1] sorted in nondecreasing order

for i ←0 to n − 2 {

for j ←0 to n − 2 − i {

if A[j + 1]<A[j]

swap A[j] and A[j + 1]

}

}

12 September 2019 CSE, BMSCE 86

Example

 First two passes of bubble sort on the
list 89, 45, 68, 90, 29, 34, 17.

12 September 2019 CSE, BMSCE 87

Example: Bubble Sort

12 September 2019 CSE, BMSCE 88

Analysis of Bubble Sort Algorithm

 The number of key comparisons for the bubble-sort
algorithm is the same for all arrays of size n; it is
obtained by a sum:

12 September 2019 CSE, BMSCE 89

Question

ALGORITHM BubbleSort(A[0..n − 1])

//Sorts a given array by bubble sort

//Input: An array A[0..n − 1] of orderable elements

//Output: Array A[0..n − 1] sorted in nondecreasing order

for i ←0 to n − 2 {

for j ←0 to n − 2 − i {

if A[j + 1]<A[j]

swap A[j] and A[j + 1]

}

}

12 September 2019 CSE, BMSCE 90

Question:
In the worst case, if the input array given
to the algorithm is in decreasing order then
How many swap operations will be carried out ?

Answer

 The number of key swaps, however, depends on the
input. In the worst case of decreasing arrays, it is the
same as the number of key comparisons:

12 September 2019 CSE, BMSCE 91

Improving Bubble Sort Algorithm



12 September 2019 CSE, BMSCE 92

Improved Bubble Sort Algorithm

ALGORITHM BubbleSort(A[0..n − 1])

//Sorts a given array by bubble sort

//Input: An array A[0..n − 1] of orderable elements

//Output: Array A[0..n − 1] sorted in nondecreasing order

for i ←0 to n − 2 {

swapped = false;

for j ←0 to n − 2 − i {

if A[j + 1]<A[j]

{ swap A[j] and A[j + 1] ; swapped = true;}

}

// IF no two elements were swapped by inner loop, then break

if (swapped == false)

break;

}

12 September 2019 CSE, BMSCE 93

Quiz

Assume that we use Improved Bubble Sort to sort n distinct
elements in ascending order. When does the best case of
Improved Bubble Sort occur?

 When elements are sorted in ascending order

 When elements are sorted in descending order

 When elements are not sorted by any order

 There is no best case for Improved Bubble Sort. It
always takes O(n*n) time

12 September 2019 CSE, BMSCE 94

Answer

Assume that we use Improved Bubble Sort to sort n distinct
elements in ascending order. When does the best case of
Improved Bubble Sort occur?

 When elements are sorted in ascending order

 When elements are sorted in descending order

 When elements are not sorted by any order

 There is no best case for Improved Bubble Sort. It
always takes O(n*n) time

12 September 2019 CSE, BMSCE 95

Question

 The given array is arr = {1,2,3,4,5}. (bubble sort is
implemented with a flag variable). The number of
iterations in selection sort and bubble sort respectively
are,

a) 5 and 4
b) 1 and 4
c) 0 and 4
d) 4 and 1

12 September 2019 CSE, BMSCE 96

Answer

 The given array is arr = {1,2,3,4,5}. (bubble sort is
implemented with a flag variable i.e., improved Bubble
sort). The number of iterations in selection sort and
bubble sort respectively are,

a) 5 and 4
b) 1 and 4
c) 0 and 4
d) 4 and 1

Answer: d
Explanation: Selection sort is insensitive to input, hence 4
iterations. Whereas bubble sort iterates only once to set the
flag to 0 as the input is already sorted.

12 September 2019 CSE, BMSCE 97

Quiz

What is the best time complexity of
Improved bubble sort?

 N^2

 NlogN

 N

 N(logN)^2

12 September 2019 CSE, BMSCE 98

Answer

What is the best time complexity of
Improved bubble sort?

 N^2

 NlogN

 N

 N(logN)^2

12 September 2019 CSE, BMSCE 99

Question

Following process depicts which sorting algorithm:

First find the smallest in the array and exchange it with the
element in the first position, then find the second smallest
element and exchange it with the element in the second
position and continue in this way until the entire array is
sorted.

 Selection Sort

 Bubble Sort

12 September 2019 CSE, BMSCE 100

Answer

Following process depicts which sorting algorithm:

First find the smallest in the array and exchange it with the
element in the first position, then find the second smallest
element and exchange it with the element in the second
position and continue in this way until the entire array is
sorted.

 Selection Sort

 Bubble Sort

12 September 2019 CSE, BMSCE 101

Question

For each i from 1 to n-1, there are ___
exchanges for selection sort

 1

 n-1

 n

12 September 2019 CSE, BMSCE 102

Answer

For each i from 1 to n-1, there are ___
exchanges for selection sort

 1

 n-1

 n

12 September 2019 CSE, BMSCE 103

Question

A selection sort compares adjacent
elements and swaps them if they are in
the wrong order

 True

 False

 Depends on the Array Elements

12 September 2019 CSE, BMSCE 104

Answer

A selection sort compares adjacent
elements and swaps them if they are in
the wrong order

 True

 False

 Depends on the Array Elements

12 September 2019 CSE, BMSCE 105

Improved Bubble Sort



12 September 2019 CSE, BMSCE 106

To Do

Write C program to sort the elements using
Selection sort and Improved Bubble sort for
ascending order
- Provide the input array in ascending order
- Execute the program for n

=10,000
=15,000
=20,000
=25,000

 Plot the graph between n and time taken for
both Selection Sort and Bubble Sort.

12 September 2019 CSE, BMSCE 107

Question

 Sort the list ―E X A M P L E‖ in alphabetical order by
bubble sort

12 September 2019 CSE, BMSCE 108

Brute Force Technique

Sorting
- Selection Sort
- Bubble Sort
Search
- Sequential Search
- String-Matching problem (or String pattern

search)

12 September 2019 CSE, BMSCE 109

Brute Force Technique

Search
- Sequential Search

12 September 2019 CSE, BMSCE 110

Brute-Force Sequential Search

 The algorithm simply compares successive elements of a
given list with a given search key until either a match is
encountered (successful search) or the list is exhausted
without finding a match (unsuccessful search).

12 September 2019 CSE, BMSCE 111

Brute Force Technique

Search
- String-Matching problem (or String pattern

search)

12 September 2019 CSE, BMSCE 112

Brute Force: String Matching Problem

 Given a string of n characters called the text and a string of m characters (m ≤
n) called the pattern, find a substring of the text that matches the pattern. To
put it more precisely, we want to find i—the index of the leftmost character of
the first matching substring in the text—such that

 A brute-force algorithm for the string-matching problem is quite obvious: align
the pattern against the first m characters of the text and start matching the
corresponding pairs of characters from left to right until either all the m pairs of
the characters match (then the algorithm can stop) or a mismatching pair is
encountered. In the latter case, shift the pattern one position to the right and
resume the character comparisons, starting again with the first character of the
pattern and its counterpart in the text. Note that the last position in the text that
can still be a beginning of a matching substring is n − m(provided the text
positions are indexed from 0 to n − 1).

12 September 2019 CSE, BMSCE 113

Example: String Matching Problem

 We start by comparing the first characters of the text and the pattern!

 Because the first character of the text and the pattern don't match, we
move forward the second character of the text. Now we compare the
second character of the text with the first character of the pattern!

12 September 2019 CSE, BMSCE 114

Example: String Matching Problem

 In case a character from the text match against the first
character of the pattern we move forward to the second
character of the pattern and the next character of the text!

12 September 2019 CSE, BMSCE 115

String Matching Problem: Algorithm

 Trace algorithm for Text=―COMPUTER‖ and
Pattern=―PUT‖

12 September 2019 CSE, BMSCE 116

String Matching Problem: Algorithm

Time Analysis

 The algorithm shifts the pattern almost always after a
single character comparison.

 The worst case is much worse: the algorithm may have
to make all m comparisons before shifting the pattern,
and this can happen for each of the n − m + 1 tries.

12 September 2019 CSE, BMSCE 117

Question

Determine the number of character comparisons made by
the brute-force algorithm in searching for the pattern
GANDHI in the text
THERE_IS_MORE_TO_LIFE_THAN_INCREASING_ITS_SPEED
(Assume that the length of the text is 47 characters long – is
known before the search starts.)

12 September 2019 CSE, BMSCE 118

Question

Determine the number of character comparisons made by
the brute-force algorithm in searching for the pattern
GANDHI in the text
THERE_IS_MORE_TO_LIFE_THAN_INCREASING_ITS_SPEED
(Assume that the length of the text–it is 47 characters long–
is known before the search starts.)

Answer:

 43 comparisons. The algorithm will make 47 − 6 + 1 = 42
trials: In the first one, the G of the pattern will be aligned
against the first T of the text; in the last one, it will be aligned
against the last space. On each but one trial, the algorithm will
make one unsuccessful comparison; on one trial–when the G of
the pattern is aligned against the G of the text –it will make
two comparisons. Thus, the total number of character
comparisons will be 41 *1+ 1 *2 = 43.

12 September 2019 CSE, BMSCE 119

Question

 How many comparisons (both successful and
unsuccessful) are made by the brute-force string
matching algorithm in searching for pattern ―00001‖ in
the binary text of 1000 zeros?

12 September 2019 CSE, BMSCE 120

Question

 How many comparisons (both successful and
unsuccessful) are made by the brute-force string
matching algorithm in searching for pattern ―00001‖ in
the binary text of 1000 zeros?

12 September 2019 CSE, BMSCE 121

Question

 How many comparisons (both successful and unsuccessful) are
made by the brute-force string-matching algorithm in
searching for each of the following patterns in the binary text
of 1000 zeros?

b. 10000 c. 01010

12 September 2019 CSE, BMSCE 122

Answer

 How many comparisons (both successful and unsuccessful) are
made by the brute-force string-matching algorithm in
searching for each of the following patterns in the binary text
of 1000 zeros?

b. 10000 c. 01010

b) 10000 There will be a total of 1000-5+1 = 996 iterations. In
each of these iterations, the first comparison would itself be
unsuccessful. Hence, there will be 996*1 = 996 unsuccessful
comparisons and there will not be any successful comparisons.
Total comparisons = 996.

c) 01010 There will be a total of 1000-5+1 = 996 iterations. In
each of these iterations, the first comparison would be successful
and the second comparison would be unsuccessful. Hence, there
will be 996*1 = 996 successful comparisons and another 996*1 =
996 unsuccessful comparisons. Total comparisons = 1992.

12 September 2019 CSE, BMSCE 123

Exhaustive Search

- Traveling Salesman Problem
- Knapsack Problem
- Assignment Problem

12 September 2019 CSE, BMSCE 124

Exhaustive Search

 Exhaustive search is simply a brute-force
approach to combinatorial problems.

 It suggests generating each and every element
of the problem domain, selecting those of them
that satisfy all the constraints, and then finding
a desired element

12 September 2019 CSE, BMSCE 125

Exhaustive Search

- Traveling Salesman Problem

12 September 2019 CSE, BMSCE 126

Traveling Salesman Problem (TSP)

 S salesman wants to visit all cities, A,
B, C and D. What is the best way to
do this (Minimal travel distance)?

12 September 2019 CSE, BMSCE 127

A B

DC

2km

3km

1km

5km 8km 7km

Salesman

Traveling Salesman Problem (TSP)

 Given a set of cities and distance
between every pair of cities, the
problem is to find the shortest possible
route that visits every city exactly once
and returns to the starting point.

 How to Solve TSP ?

 Get all tours by generating all
permutations of n-1 intermediate cities,
compute the tour lengths, and find the
shortest among them.

12 September 2019 CSE, BMSCE 128

Traveling Salesman Problem (TSP)

12 September 2019 CSE, BMSCE 129

a  b  d  c  a

a  c  b  d  a

a  c  d  b  a

a  d  b  c  a

a  d  c  b  a

a  b  c  d  a 2+8+1+7 = 18

2+3+1+5 = 11

5+8+3+7 = 23

5+1+3+2 = 11

7+3+8+5 = 23

7+1+8+2 = 18

optimal

optimal

a b

dc

2

3

1

5 8 7

List all possible routes starting from city ‗a‘ and find optimal route

Question

12 September 2019 CSE, BMSCE 130

p q

sr

3

4

2

6 8 9

List all tours starting from city p and find the shortest among them

Question

12 September 2019 CSE, BMSCE 131

p q

sr

3

4

2

6 8 9

List all tours starting from city p and find the shortest among them

Exhaustive Search: Traveling Salesman Problem

 We can get all the tours by generating all the
permutations of n − 1 intermediate cities, compute the
tour lengths, and find the shortest among them.

 Exhaustive-search approach impractical for all but very
small values of n.

12 September 2019 CSE, BMSCE 132

Exhaustive Search

- Knapsack Problem

12 September 2019 CSE, BMSCE 133

Knapsack Problem

 Given n items of known weights w1, w2, . . . ,
wn and values v1, v2, . . . , vn and a knapsack
of capacity W, find the most valuable subset of
the items that fit into the knapsack.

12 September 2019 CSE, BMSCE 134

Knapsack Problem

 You have knapsack that has capacity (weight) W

 You have several items i1,..in
 Each item ij has a weight wj and a value vj

 You want to place a certain number of copies of each
item ij in the kanpsack so that:

 The knapsack weight capacity is not exceeded and

 The total value is maximal

12 September 2019 CSE, BMSCE 135

Example

12 September 2019 CSE, BMSCE 136

W=10

knapsack Item 1 Item 2

Item 3 Item 4

w1 = 7
v1 = Rs.42

w4 = 5
v4 = Rs.25

w2 = 3
v2 = Rs.12

w3 = 4
v3 = Rs.40

subset weight value

Example

12 September 2019 CSE, BMSCE 137

W=10

knapsack Item 1 Item 2

Item 3 Item 4

w1 = 7
v1 = Rs.42

w4 = 5
v4 = Rs.25

w2 = 3
v2 = Rs.12

w3 = 4
v3 = Rs.40

subset weight value

Ø 0 Rs.0

{1} 7 Rs.42

{2} 3 Rs.12

{3} 4 Rs.40

{4} 5 Rs.25

{1,2} 10 Rs.54

{1,3} 11 Not feasible

{1,4} 12 Not feasible

Example

12 September 2019 CSE, BMSCE 138

W=10

knapsack Item 1 Item 2

Item 3 Item 4

w1 = 7
v1 = Rs.42

w4 = 5
v4 = Rs.25

w2 = 3
v2 = Rs.12

w3 = 4
v3 = Rs.40

subset weight value

Ø 0 Rs.0

{1} 7 Rs.42

{2} 3 Rs.12

{3} 4 Rs.40

{4} 5 Rs.25

{1,2} 10 Rs.54

{1,3} 11 !feasible

{1,4} 12 !feasible

{2,3} 7 Rs.52

{2,4} 8 Rs.37

{3,4} 9 Rs.65

{1,2,3} 14 !feasible

{1,2,4} 15 !feasible

{1,3,4} 16 !feasible

{2,3,4} 12 !feasible

{1,2,3,4} 19 !feasible

Question: Knapsack Problem

 Let W=40. Let the weight of three
objects be 20, 25, 10 and value of
corresponding objects be 30, 40 and
35. Find the optimal solution.

12 September 2019 CSE, BMSCE 139

Question: Knapsack Problem

 Let W=40. Let the weight of three
objects be 20, 25, 10 and value of
corresponding objects be 30, 40 and
35. Find the optimal solution.

12 September 2019 CSE, BMSCE 140

Exhaustive Search: Knapsack Problem

 The exhaustive-search approach to this problem leads to
generating all the subsets of the set of n items given,
computing the total weight of each subset in order to
identify feasible subsets (i.e., the ones with the total
weight not exceeding the knapsack capacity), and
finding a subset of the largest value among them.

 Since the number of subsets of an n-element set is 2n,
the exhaustive search leads to a 2n algorithm, no matter
how efficiently individual subsets are generated.

12 September 2019 CSE, BMSCE 141

Exhaustive Search

- Assignment Problem

12 September 2019 CSE, BMSCE 142

Assignment Problem

 There are n people who need to be
assigned to execute n jobs, one
person per job.

 C[i, j] : cost that would occur if ith

person is assigned to jth job.

 Find an assignment with the
minimum total cost.

12 September 2019 CSE, BMSCE 143

Assignment Problem

 Let there be N workers and N jobs. Any worker can be
assigned to perform any job, incurring some cost that may
vary depending on the work-job assignment. It is required to
perform all jobs by assigning exactly one worker to each job
and exactly one job to each agent in such a way that the total
cost of the assignment is minimized.

12 September 2019 CSE, BMSCE 144

Job 1 Job 2 Job 3 Job 4

Person A Rs. 9 Rs. 2 Rs. 7 Rs. 8

Person B Rs. 6 Rs. 4 Rs. 3 Rs. 7

Person C Rs. 5 Rs. 8 Rs. 1 Rs. 8

Person D Rs. 7 Rs. 6 Rs. 9 Rs. 4

Person A
Takes 8 units
To Complete Job4

Assignment Problem

 Let there be N workers and N jobs. Any worker can be
assigned to perform any job, incurring some cost that may
vary depending on the work-job assignment. It is required to
perform all jobs by assigning exactly one worker to each job
and exactly one job to each agent in such a way that the total
cost of the assignment is minimized.

12 September 2019 CSE, BMSCE 145

Job 1 Job 2 Job 3 Job 4

Person A 9 2 7 8

Person B 6 4 3 7

Person C 5 8 1 8

Person D 7 6 9 4

Person A
Takes 8 units
Of time to
Complete Job4

Green values show optimal job assignment
that is A-Job2, B-Job1, C-Job3 and D-Job4

Example: Assignment Problem

12 September 2019 CSE, BMSCE 146

Job 1 Job 2 Job 3 Job 4

Person A 10 3 8 9

Person B 7 5 4 8

Person C 6 9 2 9

Person D 8 7 10 5

Find the optimal job assignment for the following

Example: Assignment Problem

12 September 2019 CSE, BMSCE 147

Job 1 Job 2 Job 3 Job 4

Person A 10 3 8 9

Person B 7 5 4 8

Person C 6 9 2 9

Person D 8 7 10 5

Exhaustive Search: Assignment Problem

 We can describe feasible solutions to the assignment problem as n-
tuples j1, . . . , jn in which the ith component, i = 1, . . . , n, indicates
the column of the element selected in the ith row (i.e., the job number
assigned to the ith person).

 The requirements of the assignment problem imply that there is a one-
to-one correspondence between feasible assignments and
permutations of the first n integers.

 Therefore, the exhaustive-search approach to the assignment problem
would require generating all the permutations of integers 1, 2, . . . , n,
computing the total cost of each assignment by summing up the
corresponding elements of the cost matrix, and finally selecting the
one with the smallest sum.

 Since the number of permutations to be considered for the general
case of the assignment problem is n!, exhaustive search is impractical
for all but very small instances of the problem.

12 September 2019 CSE, BMSCE 148

Thanks for Listening

12 September 2019 CSE, BMSCE 149

