
INTRODUCTION

Ever since computers were invented, we have wondered whether they 
might be made to learn. If we could understand how to program them 
to learn-to improve automatically with experience-the impact would 
be dramatic. 

• Imagine computers learning from medical records which 
treatments are most effective for new diseases.

• houses learning from experience to optimize energy costs based 
on the particular usage patterns of their occupants. 

• personal software assistants learning the evolving interests of 
their users in order to highlight especially relevant stories from 
the online morning newspaper.
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Some successful applications of machine learning.

•Learning to recognize spoken words.

•Learning to drive an autonomous vehicle.

•Learning to classify new astronomical structures.

•Learning to play world-class backgammon.
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Why is Machine Learning Important?

•Some tasks cannot be defined well, except by examples (e.g., 
recognizing people).

•Relationships and correlations can be hidden within large amounts of 
data. Machine Learning/Data Mining may be able to find these 
relationships.

•Human designers often produce machines that do not work as well as 
desired in the environments in which they are used.

•The amount of knowledge available about certain tasks might be too 
large for explicit encoding by humans (e.g., medical diagnostic).

•Environments change over time.

•New knowledge about tasks is constantly being discovered by humans. It 
may be difficult to continuously re-design systems “by hand”.
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Areas of Influence for Machine Learning

• Statistics: How best to use samples drawn from unknown probability 
distributions to help decide from which distribution some new sample is 
drawn?

• Brain Models: Non-linear elements with weighted inputs (Artificial Neural 
Networks) have been suggested as simple models of biological neurons.

• Adaptive Control Theory: How to deal with controlling a process having 
unknown parameters that must be estimated during operation? 

• Psychology: How to model human performance on various learning tasks?

• Artificial Intelligence: How to write algorithms to acquire the knowledge 
humans are able to acquire, at least, as well as humans? 

• Evolutionary Models: How to model certain aspects of biological evolution 
to improve the performance of computer programs?
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Machine Learning was coined in 1959 by Arthur Samuel, an
American IBMer and pioneer in the field of computer gaming and artificial
intelligence.

“Machine learning is the science of getting computers to act without being
explicitly programmed.” — Stanford University
It’s a subset of AI which uses statistical methods to enable machines to
improve with experience.

Machine learning involves computers discovering how they can perform
tasks without being explicitly programmed to do so. It involves computers
learning from data provided so that they carry out certain tasks.

https://www.coursera.org/learn/machine-learning/lecture/Ujm7v/what-is-machine-learning
https://www.coursera.org/learn/machine-learning/lecture/Ujm7v/what-is-machine-learning
https://www.coursera.org/learn/machine-learning/lecture/Ujm7v/what-is-machine-learning
















Machine Learning : A Definition:

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.
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Learning is used when:

•Human expertise does not exist (navigating on Mars)

•Humans are unable to explain their expertise (speech recognition)

•Solution changes with time (routing on a computer network)

•Solution needs to be adapted to particular cases (user biometrics)
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WELL-POSED LEARNING PROBLEMS

Definition: A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experience E.

To have a well-defined learning problem, we must identity these three
features:

1. the class of tasks

2. the measure of performance to be improved

3. the source of experience.
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WELL-POSED LEARNING PROBLEMS

A checkers learning problem:

• Task T: playing checkers
• Performance measure P: percent of games won against opponents
• Training experience E: playing practice games against itself

A handwriting recognition learning problem:

• Task T: recognizing and classifying handwritten words within images
• Performance measure P: percent of words correctly classified
•Training experience E: a database of handwritten words with given
classifications
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A robot driving learning problem:

•Task T: driving on public four-lane highways using vision sensors
•Performance measure P: average distance travelled before an error
(as judged by human overseer)
• Training experience E: a sequence of images and steering
commands recorded while observing a human driver
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Checkers game
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About game

•Classic Checkers is played by two players. Each player begins the game
with 12 colored discs. (Typically, one set of pieces is black and the other
white.)

•

• The board consists of 64 squares, alternating between 32 dark and 32
light squares. It is positioned so that each player has a light square on
the right side corner closest to him or her.

•A player wins the game when the opponent cannot make a move. In
most cases, this is because all of the opponent's pieces have been
captured, but it could also be because all of his pieces are blocked in.
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Rules of the game

•Each player places his or her pieces on the 12 dark squares closest to him or 
her.
• White moves first. Players then alternate moves.
• Moves are allowed only on the dark squares, so pieces always move 
diagonally. Single pieces are always limited to forward moves (toward the 
opponent).
• A piece making a non-capturing move (not involving a jump) may move 
only one square.
• A piece making a capturing move (a jump) leaps over one of the 
opponent's pieces, landing in a straight diagonal line on the other side. Only 
one piece may be captured in a single jump; however, multiple jumps are 
allowed on a single turn.
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Rules of the game cont.

• When a piece is captured, it is removed from the board.

• If a player is able to make a capture, there is no option - the jump
must be made. If more than one capture is available, the player is free
to choose whichever he or she prefers.

• When a piece reaches the furthest row from the player who controls
that piece, it is crowned and becomes a king.

• Kings are limited to moving diagonally, but may move both forward
and backward. (Remember that single pieces, i.e. non-kings, are
always limited to forward moves.)
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DESIGNING A LEARNING SYSTEM

1. Choosing the Training Experience

2. Choosing the Target Function

3. Choosing a Representation for the Target Function

4. Choosing a Function Approximation Algorithm

1. Estimating training values

2. Adjusting the weights

5. The Final Design
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To illustrate some of the basic design issues and 
approaches to machine learning, let us consider 
designing a program to learn to play checkers, with
the goal of entering it in the world checkers  
tournament.
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1 Choosing the Training Experience

The first design choice we face is to choose the type of training 
experience from which our system will learn. 
The type of training experience available can have a
significant impact on success or failure of the learner.

The type(key attribute) of training experience available can have 
a significant impact on success or failure of the learner. 
1. whether the training experience provides direct or indirect 

feedback regarding the choices made by the performance 
system.

2. the degree to which the learner controls the sequence of 
training examples.

3. how well it represents the distribution of examples over which 
the final system performance P must be measured.
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1. Whether the training experience provides direct or indirect 
feedback regarding the choices made by the performance system.

For example, in learning to play checkers:

• The system might learn from direct training examples consisting of individual 
checkers board states and the correct move for each.
• Alternatively, it might have available only indirect information consisting of the 
move sequences and final outcomes of various games played.
• In this later case, information about the correctness of specific moves early in 
the game must be inferred indirectly from the fact that the game was eventually 
won or lost. 
•Here the learner faces an additional problem of credit assignment, or 
determining the degree to which each move in the sequence deserves credit or 
blame for the final outcome. 
•Credit assignment can be a particularly difficult problem because the game can 
be lost even when early moves are optimal, if these are followed later by poor 
moves. 
•Hence, learning from direct training feedback is typically easier than learning 
from indirect feedback.
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2. Training experience is the degree to which the learner controls the 
sequence of training examples. 
•the learner might rely on the teacher to select informative board states and 
to provide the correct move for each. 
•Alternatively, the learner might itself propose board states that it finds 
particularly confusing and ask the teacher for the correct move. 
•The learner may have complete control over both the board states and 
(indirect) training classifications, as it does when it learns by playing against 
itself with no teacher present. 
•Notice in this last case the learner may choose between experimenting with 
novel board states that it has not yet considered, or honing its skill by playing 
minor variations of lines of play it currently finds most promising. 
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3. Training experience is how well it represents the distribution of examples 
over which the final system performance P must be measured.
learning is most reliable when the training examples follow a distribution 
similar to that of future test examples.
• In checkers learning scenario, the performance metric P is the percent of 
games the system wins in the world tournament. 
•If its training experience E consists only of games played against itself, 
there is an obvious danger that this training experience might not be fully 
representative of the distribution of situations over which it will later be 
tested. For example, the learner might never encounter certain crucial 
board states that are very likely to be played by the human checkers 
champion. 
•it is often necessary to learn from a distribution of examples that is 
somewhat different from those on which the final system will be evaluated 
(e.g., the world checkers champion might not be interested in teaching the 
program!). Such situations are problematic because mastery of one 
distribution of examples will not necessary lead to strong performance over 
some other distribution.
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2 Choosing the Target Function

The next design choice is to determine exactly what type of knowledge will be
learned and how this will be used by the performance program.
• Let us begin with a checkers-playing program that can generate the legal moves 
from any board state. 
•The program needs only to learn how to choose the best move from among 
these legal moves. This learning task is representative of a large class of tasks for 
which the legal moves that define some large search space are known a priori, 
but for which the best search strategy is not known.
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Given this setting where we must learn to choose among the legal moves,
the most obvious choice for the type of information to be learned is a 
program, or function, that chooses the best move for any given board 
state. 
Let us call this function ChooseMove and use the notation 
ChooseMove : B M 
to indicate that this function accepts as input any board from the set of 
legal board states B and produces as output some move from the set of 
legal moves M. 
Throughout our discussion of machine learning we will find it useful to 
reduce the problem of improving performance P at task T to the problem 
of learning some particular targetfunction such as ChooseMove
ChooseMove is an obvious choice for the target function in our
example, this function will turn out to be very difficult to learn given the 
kind of indirect training experience available to our system.
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An alternative target function and one that will turn out to be easier to learn in this 
setting-is an evaluation function that assigns a numerical score to any given board 
state. 
Let the target function V and the notation V : B  R to denote that V maps
any legal board state from the set B to some real value (we use 8 to denote the set
of real numbers). We intend for this target function V to assign higher scores to
better board states. If the system can successfully learn such a target function V,
then it can easily use it to select the best move from any current board position.
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Let us therefore define the target value V(b) for an arbitrary board state b in B, as 
follows:

1. if b is a final board state that is won, then V(b) = 100

2. if b is a final board state that is lost, then V(b) = -100

3. if b is a final board state that is drawn, then V(b) = 0

4. if b is a not a final state in the game, then V(b) = V(bl), where b' is the best

final board state that can be achieved starting from b and playing optimally

until the end of the game (assuming the opponent plays optimally, as well).
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3. Choosing a Representation for the Target Function

let us choose a simple representation:

for any given board state, the function c will be calculated as a linear combination of 
the following board features:

xl: the number of black pieces on the board

x2: the number of red pieces on the board

x3: the number of black kings on the board

x4: the number of red kings on the board

x5: the number of black pieces threatened by red (i.e., which can be captured on red's 
next turn)

X6: the number of red pieces threatened by black
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learning program will represent c(b) as a linear function of the

Form

where w0 through W6 are numerical coefficients, or weights, to be chosen by the 
learning algorithm. 

Learned values for the weights w1 through W6 will determine the relative 
importance of the various board features in determining the value of

the board, 

the weight w0 will provide an additive constant to the board

value.
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Partial design of a checkers learning program:

Task T: playing checkers

Performance measure P: percent of games won in the world 
tournament

Training experience E: games played against itself

Target function: V:  Board

Target function representation

The first three items above correspond to the specification of the learning 
task, whereas the final two items constitute design choices for the 
implementation of the learning program
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4 Choosing a Function Approximation Algorithm

In order to learn the target function f we require a set of training examples, each

describing a specific board state b and the training value Vtrain(b) for b. 

each training example is an ordered pair of the form (b, V(b)).

For instance, the following training example describes a board state b in which black

has won the game (note x2 = 0 indicates that red has no remaining pieces) and

for which the target function value Vtrain(b)s therefore +100.
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Function Approximation Procedure 

1. Derive training examples from the indirect training experience available to the 
learner 

2. Adjusts the weights wi to best fit these training examples 
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1. Estimating training values 

A simple approach for estimating training values for intermediate board 
states is to assign the training value of Vtrain(b) for any intermediate board 
state b to be V̂(Successor(b)) 

Where , 

V̂ is the learner's current approximation to V 

Successor(b) denotes the next board state following b for which it is again 
the program's turn to move 

Rule for estimating training values 

Vtrain(b) ← V̂ (Successor(b)) 
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2. Adjusting the weights 

Specify the learning algorithm for choosing the weights wi to best fit the set of 
training examples {(b, Vtrain(b))} 

A first step is to define what we mean by the best fit to the training data. 

•One common approach is to define the best hypothesis, or set of weights, as that 
which minimizes the squared error E between the training values and the values 
predicted by the hypothesis. 

•Several algorithms are known for finding weights of a linear function that 
minimize E. 
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we require an algorithm that will incrementally refine the weights as new 
training examples become available and that will be robust to errors in these 
estimated training values.

One such algorithm is called the least mean squares, or LMS training rule. For 
each observed training example it adjusts the weights a small amount in the 
direction that reduces the error on this training example

LMS weight update rule :- For each training example (b, Vtrain(b)) 

Use the current weights to calculate V̂ (b) 

For each weight wi, update it as 

wi ← wi + ƞ (Vtrain (b) - V̂(b)) xi

Here ƞ is a small constant (e.g., 0.1) that moderates the size of the weight 
update. 
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Working of weight update rule

• When the error (Vtrain(b)- V̂(b)) is zero, no weights are changed. 

•When (V (trainb) - V̂(b)) is positive (i.e., when V̂(b) is too low), then each weight is 
increased in proportion to the value of its corresponding feature. This will raise the 
value of V̂(b), reducing the error. 

• If the value of some feature xi is zero, then its weight is not altered regardless of 
the error, so that the only weights updated are those whose features actually occur 
on the training example board. 
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5. The Final Design 

The final design of checkers learning system can be described by four distinct 
program modules that represent the central components in many learning systems 
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1. The Performance System is the module that must solve the given 
performance task by using the learned target function(s). It takes an instance 
of a new problem (new game) as input and produces a trace of its solution 
(game history) as output. 

2. The Critic takes as input the history or trace of the game and produces as 
output a set of training examples of the target function 
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3. The Generalizer takes as input the training examples and produces an output 
hypothesis that is its estimate of the target function. It generalizes from the specific 
training examples, hypothesizing a general function that covers these examples and 
other cases beyond the training examples. 

4. The Experiment Generator takes as input the current hypothesis and outputs a 
new problem (i.e., initial board state) for the Performance System to explore. Its 
role is to pick new practice problems that will maximize the learning rate of the 
overall system. 
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The sequence of design choices made for the checkers program is summarized 
in below figure 
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PERSPECTIVES AND ISSUES IN MACHINE LEARNING 

Issues in Machine Learning 

The field of machine learning, and much of this book, is concerned with answering 
questions such as the following 

• What algorithms exist for learning general target functions from specific training 
examples? In what settings will particular algorithms converge to the desired 
function, given sufficient training data? Which algorithms perform best for which 
types of problems and representations? 

• How much training data is sufficient? What general bounds can be found to relate 
the confidence in learned hypotheses to the amount of training experience and the 
character of the learner's hypothesis space? 
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•When and how can prior knowledge held by the learner guide the process of 
generalizing from examples? Can prior knowledge be helpful even when it is 
only approximately correct? 

•What is the best strategy for choosing a useful next training experience, and 
how does the choice of this strategy alter the complexity of the learning 
problem? 

• What is the best way to reduce the learning task to one or more function 
approximation problems? Put another way, what specific functions should the 
system attempt to learn? Can this process itself be automated? 

• How can the learner automatically alter its representation to improve its 
ability to represent and learn the target function? 



20CS6PCMAL 48

Concept Learning
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Learning involves acquiring general concepts from specific training 
examples. Example: People continually learn general concepts or 
categories such as "bird," "car," "situations in which I should study more in 
order to pass the exam," etc. 

Each such concept can be viewed as describing some subset of objects or 
events defined over a larger set 

Definition: Concept learning - Inferring a Boolean-valued function from 
training examples of its input and output 



What is a Concept ?

Concept of 
Cats 

Concept of 
Birds

Concept of 
Fishes

Concept of 
Horses

Concept of 
Dogs

A concept describes a subset of 
objects or events defined over a 
larger set  



Concept Learning

• Acquire/Infer the definition of a general concept or 
category given a (labeled) sample of positive and negative 
training examples of the category

– Each concept can be thought of as a Boolean-valued (true/false 
or yes/no) function
• Approximate a Boolean-valued function from examples

– Concept learning can be formulated as a problem of searching 
through a predefined space of potential hypotheses for the 
hypothesis that best fits the training examples

– Take advantage of a naturally occurring structure over the 
hypothesis space
• General-to-specific ordering of hypotheses 

learning based on symbolic representations

G

S



Training Examples for EnjoySport
• Concept to be learned

– “Days on which Aldo enjoys his favorite water sport”

• Days (examples/instances) are represented by a set of 
attributes

• What is the general concept ?
– The task is to learn to predict the value of EnjoySport for an 

arbitrary day based on the values of other attributes
– Learn a (a set of) hypothesis representation(s) for the concept 

Days

Attributes

Concept to 
be

learned



Representing Hypotheses
• Many possible representations for hypotheses h
• Here h is conjunction of constraints on attributes
• Each constraint can be

– A specific value (e.g., “Water=Warm” )
– Don’t care (e.g., “Water=?” )
– No value acceptable (e.g., “Water=Ø ” )

• For example
Sky     AirTemp Humid    Wind     Water    Forecast

< Sunny ?                ?          Strong ?              Same >

– Most general hypothesis 

– Most specific hypothesis

<     ?            ?                ?               ?             ?                  ?     >

<     Ø Ø Ø Ø Ø Ø >

A hypothesis is
a vector of 

constraints 

All are negative
examples

All are positive
examples



Definition of Concept Learning Task

• Given
– Instances X: possible days, each described by six attributes

Sky,     AirTemp,      Humidity,     Wind,       Water,       Forecast

– Target concept/function c : EnjoySport X → {0, 1}

– Hypotheses H : Conjunctions of Literals. E.g.,

– Training examples D : Positive and negative examples
(members/nonmembers) of the target function (concept)

• Determine
– A hypothesis h in H (an approximate target function) such that 

h(x)=c(x) for all x in D

<?,Cold, High, ?, ?, ? >

<x1,c(x1)>, <x2,c(x2)>,…., <xm,c(xm)>

(Sunny, Cloudy, Rainy) (Warm, Cold) (Normal, High) (Strong, Week) (Warm, Cool) (Same, Change)

target concept value

“No”  “Yes”



The Inductive Learning Hypothesis

• Any hypothesis found to approximate the 
target function well over a sufficiently large 
set of training examples          

will also approximate the target function 
well over other unobserved examples

– Assumption of Inductive Learning

• The best hypothesis regarding the unseen instances is 
the hypothesis that best fits the observed training data



Viewing Learning As a Search Problem

• Concept learning can be viewed as the task of 
searching through a large space of hypotheses

Instance space X

Sky (Sunny/Cloudy/Rainy)
AirTemp (Warm/Cold)
Humidity (Normal/High)
Wind (Strong/Weak)
Water (Warm/Cool)
Forecast (Same/Change)

=> 3*2*2*2*2*2=96 instances 

Hypothesis space H

5*4*4*4*4*4=5120 syntactically
distinct hypotheses 

1+4*3*3*3*3*3=973 semantically
distinct hypotheses

Each hypothesis is represented as
a conjunction of constraints

Ø

<   Sunny Ø Normal Strong  Cool  Change>

E.g.,
<   Ø Warm Normal Strong  Cool  Same >



Viewing Learning As a Search Problem

• Study of learning algorithms that examine 
different strategies for searching the hypothesis 
space, e.g.,
– Find-S Algorithm
– List-Then-Eliminate Algorithm
– Candidate Elimination Algorithm

• How to exploit the naturally occurring structure 
in the hypothesis apace ?
– Relations among hypotheses , e.g.,

• General-to-Specific-Ordering



General-to-Specific-Ordering of 
Hypothesis

• Many concept learning algorithms organize the search 
through the hypothesis space by taking advantage of a 
naturally occurring structure over it
– “general-to-specific ordering”

• h2 is more general than h1
– h2 imposes fewer constraints on instances
– h2 classify more positive instances than h1 does

– A useful structure over the hypothesis space

Suppose that h1 and h2 classify
positive examples



More-General-Than Partial Ordering

• Definition
– Let hj and hk be Boolean-valued functions defined over X. 

Then hj is more general than hk (hj  >g hk) if and only if

• We also can define the more-specific-than ordering

        1    1   xhxhXx jk

x satisfies hk



General-to-Specific Ordering of Hypotheses
• An illustrative example

• Suppose instances are classified positive by h1, h2 , h3

– h2 (imposing fewer constraints) are more general than h1 and h3

– h1 h3?

partial order relation
- antisymmetric, transitive

cgacgbbga hhhhhh        ,



Find-S Algorithm

• Find a maximally specific hypothesis by using the 
more-general-than partial ordering to organize the search 
for a hypothesis consistent with the observed training 
examples

1. Initialize h to the most specific hypothesis in H
2. For each positive training instance x

– For each attribute constraint ai in h
If the constraint ai in h is satisfied by x
Then do nothing
Else replace ai in h by the next more general constraint that is satisfied 

by x

3. Output hypothesis h

 ,,,,,h



Find-S Algorithm
• Hypothesis Space Search by Find-S

– Substitute a “?” in place of any attribute value in h that is 
Substitute a “?” in place of any attribute value in h that is 
not  satisfied by the new example

no change!



Find-S Algorithm

• Why F-S never check a negative example ?

– The hypothesis h found by it is the most specific one in H

– Assume the target concept c is also in H which will cover both 
the training and unseen positive examples

• c is more general than h

– Because the target concept will not cover the negative 
examples, thus neither will the hypothesis h 

can be represented as
a conjunction of attributes



Complaints about Find-S

• Can not tell whether it has learned concept
(Output only one. Many other consistent hypotheses may exist!)

• Picks a maximally specific h (why?)
(Find a most specific hypothesis consistent with the training data)

• Can not tell when training data inconsistent
– What if there are noises or errors contained in 

training examples

• Depending on H, there might be several !



Consistence of Hypotheses

• A hypothesis h is consistent with a set of training 
examples D of target concept c if and only if
h(x)=c(x) for each training example <x, c(x)> in D

• But satisfaction has another meaning
– An example x is said to satisfy a hypothesis h when h(x)=1, 

regardless of whether x is positive or negative example of 
the target concept

        xcxhDxcxh, DConsistent       ,



Version Space

• The version space VSH,D with respect to 
hypothesis space H and training examples D is 
the subset of hypotheses from H consistent 
with all training examples in D

– A subspace of hypotheses

– Contain all plausible versions of the target 
concepts

  DhConsistentHhVS DH  ,, 



List-Then-Eliminate Algorithm
1. VersionSpace ← a list containing all hypotheses 

in H

2. For each training example, <x, c(x)> 
remove from VersionSpace any hypothesis h for which 
h(x)≠c(x)

– i.e., eliminate hypotheses inconsistent with any 
training examples 

– The VersionSpace shrinks as more examples are 
observed

3. Output the list of hypotheses in VersionSpace



Drawbacks of List-Then-Eliminate

• The algorithm requires exhaustively 
enumerating all hypotheses in H

– An unrealistic approach ! (full search)

• If insufficient (training) data is available, the 
algorithm will output a huge set of hypotheses 
consistent with the observed data



Example Version Space

• Employ a much more compact representation of the version 
space in terms of its most general and least general (most 
specific) members

Also found by F-S

Arrows mean more-general-than relations

Specific

General



Representing Version Space

• The General boundary G, of version space
VSH,D is the set of its maximally general members

• The Specific boundary S, of version space
VSH,D is the set of its maximally specific members

• Every member of the version space lies between 
these boundaries

– Version Space Representation Theorem

    sh  gGgSsHhVS ggDH ,

         DgConsistentggHgDgConsistentHgG g  , , 

         DsConsistentssHsDsConsistentHsS g  , , 



Candidate Elimination Algorithm
• For each training example d, do

– If d is a positive example
• Remove from G any hypothesis inconsistent with d

• For each hypothesis s in S that is not consistent with d
– Remove s from S

– Add to S all minimal generalizations h of s such that

» h is consistent with d, and

» some member of G is more general than h

– Remove from S any hypothesis that is more general than 
another hypothesis in S 
(i.e., partial-ordering relations exist)

positive training examples force the S boundary become increasing general



Candidate Elimination Algorithm
– If d is a negative example

• Remove from S any hypothesis inconsistent with d

• For each hypothesis g in G that is not consistent with d
– Remove g from G

– Add to G all minimal specializations h of g such that

» h is consistent with d, and

» some member of S is more specific than h

– Remove from G any hypothesis that is less general than 
another hypothesis in G

negative training examples force the G boundary become increasing specific



Candidate Elimination Algorithm

• G ← maximally general hypotheses in H

• S ← maximally specific hypotheses in H

 ??,?,?,?,?,0 G

  ,,,,,0 S

Should be specialized 

Should be generalized



Example Trace



Example Trace



Example Trace

• G2 has six ways to be minimally specified
– Why <?,? ,Normal,?,?,? > etc. do not exist in G3 ?

<   ? ? Normal ?  ?  ?>

?



Example Trace

• Notice that, 
– S is a summary of the previously positive examples

– G is a summary of the previously negative examples



Example Trace

• S and G boundaries move monotonically closer to each 
other, delimiting a smaller and smaller version space



What Next Training Example

• Learner can generate useful queries

– Discriminate among the alternatives competing 
hypotheses in the current version space

If a positive hypothesis is posed:
<Sunny, Warm, Normal, Light, Warm, Same >
What if it is a negative one ?

Specific

General
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INDUCTIVE BIAS 

The fundamental questions for inductive inference 

1. What if the target concept is not contained in the hypothesis space? 

2. Can we avoid this difficulty by using a hypothesis space that includes every 
possible hypothesis? 

3. How does the size of this hypothesis space influence the ability of the algorithm 
to generalize to unobserved instances? 

4. How does the size of the hypothesis space influence the number of training 
examples that must be observed? 

These fundamental questions are examined in the context of the CANDIDATE-
ELIMINTION algorithm 
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A Biased Hypothesis Space 
•Suppose the target concept is not contained in the hypothesis space H, then obvious 
solution is to enrich the hypothesis space to include every possible hypothesis. 

• Consider the EnjoySport example in which the hypothesis space is restricted 
to include only conjunctions of attribute values. Because of this restriction, the 
hypothesis space is unable to represent even simple disjunctive target 
concepts such as 

"Sky = Sunny or Sky = Cloudy." 
• The following three training examples of disjunctive hypothesis, the algorithm 
would find that there are zero hypotheses in the version space 
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<Sunny Warm Normal Strong Cool Change>    Y 
<Cloudy Warm Normal Strong Cool Change>   Y 
<Rainy Warm Normal Strong Cool Change>     N 

•If Candidate Elimination algorithm is applied, then it end up with empty 
Version Space. After first two training example 

S= <? Warm Normal Strong Cool Change> 

•This new hypothesis is overly general and it incorrectly covers the third 
negative training example! So H does not include the appropriate c. 

• In this case, a more expressive hypothesis space is required. 
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An Unbiased Learner 
•The solution to the problem of assuring that the target concept is in the hypothesis space H 
is to provide a hypothesis space capable of representing every teachable concept that is 
representing every possible subset of the instances X. 
• The set of all subsets of a set X is called the power set of X 

• In the EnjoySport learning task the size of the instance space X of days described by 
the six attributes is 96 instances. 
• Thus, there are 296 distinct target concepts that could be defined over this instance 
space and learner might be called upon to learn. 
• The conjunctive hypothesis space is able to represent only 973 of these - a biased 
hypothesis space indeed 

•Let us reformulate the EnjoySport learning task in an unbiased way by defining a new 
hypothesis space H' that can represent every subset of instances
• The target concept "Sky = Sunny or Sky = Cloudy" could then be described as 

(Sunny, ?, ?, ?, ?, ?) v (Cloudy, ?, ?, ?, ?, ?) 
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The Futility of Bias-Free Learning 

Inductive learning requires some form of prior assumptions, or inductive bias 

Definition: 

Consider a concept learning algorithm L for the set of instances X. 

•Let c be an arbitrary concept defined over X 

• Let Dc = {(x , c(x))} be an arbitrary set of training examples of c. 

• Let L (xi , Dc) denote the classification assigned to the instance xi by L after 
training on the data Dc. 

•The inductive bias of L is any minimal set of assertions B such that for any 
target concept c and corresponding training examples Dc 
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The below figure explains 

•Modelling inductive systems by equivalent deductive systems. 

•The input-output behavior of the CANDIDATE-ELIMINATION algorithm using a 
hypothesis space H is identical to that of a deductive theorem prover utilizing 
the assertion "H contains the target concept." This assertion is therefore called 
the inductive bias of the CANDIDATE-ELIMINATION algorithm. 

• Characterizing inductive systems by their inductive bias allows modelling 
them by their equivalent deductive systems. This provides a way to compare 
inductive systems according to their policies for generalizing beyond the 
observed training data. 
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DECISION TREE LEARNING 

Decision tree learning is a method for approximating discrete-valued target 
functions, in which the learned function is represented by a decision tree. 

DECISION TREE REPRESENTATION 

• Decision trees classify instances by sorting them down the tree from the root 
to some leaf node, which provides the classification of the instance. 

• Each node in the tree specifies a test of some attribute of the instance, and 
each branch descending from that node corresponds to one of the possible 
values for this attribute. 

• An instance is classified by starting at the root node of the tree, testing the 
attribute specified by this node, then moving down the tree branch 
corresponding to the value of the attribute in the given example. This process is 
then repeated for the subtree rooted at the new node. 
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•Decision trees represent a disjunction of conjunctions of 
constraints on the attribute values of instances. 

•Each path from the tree root to a leaf corresponds to a conjunction 
of attribute tests, and the tree itself to a disjunction of these 
conjunctions 

For example, the decision tree shown in above figure corresponds 
to the expression 

(Outlook = Sunny ∧ Humidity = Normal) 

∨ (Outlook = Overcast) 

∨ (Outlook = Rain ∧ Wind = Weak) 
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APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING 

Decision tree learning is generally best suited to problems with the following 
characteristics: 

1. Instances are represented by attribute-value pairs – Instances are 
described by a fixed set of attributes and their values 

2. The target function has discrete output values – The decision tree 
assigns a Boolean classification (e.g., yes or no) to each example. Decision 
tree methods easily extend to learning functions with more than two 
possible output values. 

3. Disjunctive descriptions may be required 

4. The training data may contain errors – Decision tree learning methods 
are robust to errors, both errors in classifications of the training examples 
and errors in the attribute values that describe these examples. 

5. The training data may contain missing attribute values – Decision tree 
methods can be used even when some training examples have unknown 
values 
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THE BASIC DECISION TREE LEARNING ALGORITHM

The basic algorithm is ID3 which learns decision trees by constructing them 
top-down 
ID3(Examples, Target_attribute, Attributes) 

Examples are the training examples. Target_attribute is the attribute whose 
value is to be predicted by the tree. Attributes is a list of other attributes that 
may be tested by the learned decision tree. Returns a decision tree that 
correctly classifies the given Examples. 
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• Create a Root node for the tree 
• If all Examples are positive, Return the single-node tree Root, with label = + 
• If all Examples are negative, Return the single-node tree Root, with label = -
• If Attributes is empty, Return the single-node tree Root, with label = most 
common value of Target_attribute in Examples 

• Otherwise Begin 
• A ← the attribute from Attributes that best* classifies Examples 
• The decision attribute for Root ← A 
• For each possible value, vi, of A, 

• Add a new tree branch below Root, corresponding to the test A = vi

• Let Examples vi, be the subset of Examples that have value vi for A 
• If Examples vi , is empty 

• Then below this new branch add a leaf node with label = most 
common value of Target_attribute in Examples 
• Else below this new branch add the subtree

ID3(Examples vi, Targe_tattribute, Attributes – {A})) 
• End 
• Return Root 
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* The best attribute is the one with highest information 
gain 

TABLE: Summary of the ID3 algorithm specialized to 
learning Boolean-valued functions. ID3 is a greedy 
algorithm that grows the tree top-down, at each node 
selecting the attribute that best classifies the local 
training examples. This process continues until the tree 
perfectly classifies the training examples, or until all 
attributes have been used 
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Which Attribute Is the Best Classifier? 

• The central choice in the ID3 algorithm is selecting which attribute to test 
at each node in the tree. 

• A statistical property called information gain that measures how well a 
given attribute separates the training examples according to their target 
classification. 

• ID3 uses information gain measure to select among the candidate 
attributes at each step while growing the tree. 
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ENTROPY MEASURES HOMOGENEITY OF EXAMPLES 

To define information gain, we begin by defining a measure called 
entropy. Entropy measures the impurity of a collection of 
examples. 

Given a collection S, containing positive and negative examples of 
some target concept, the entropy of S relative to this Boolean 
classification is 

Where, 

p+ is the proportion of positive examples in S 

p- is the proportion of negative examples in S. 
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Example: 

Suppose S is a collection of 14 examples of some boolean concept, 
including 9 positive and 5 negative examples. Then the entropy of S 
relative to this boolean classification is 

•The entropy is 0 if all members of S belong to the same class 

•The entropy is 1 when the collection contains an equal number of 
positive and negative examples 

•If the collection contains unequal numbers of positive and negative 
examples, the entropy is between 0 and 1 
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INFORMATION GAIN MEASURES THE EXPECTED REDUCTION IN ENTROPY 

•Information gain, is the expected reduction in entropy caused by partitioning 
the examples according to this attribute. 

•The information gain, Gain(S, A) of an attribute A, relative to a collection of 
examples S, is defined as 

Example: Information gain 
Let, Values(Wind) = {Weak, Strong} 

S  = *9+ , 5−+ 
Sweak = *6+ , 2−+ 

Sstrong = *3+ , 3−+ 
Information gain of attribute Wind: 
Gain(S, Wind) = Entropy(S) − 8/14 Entropy (SWeak) − 6/14 Entropy (SStrong) 

= 0.94 – (8/14)* 0.811 – (6/14) *1.00 
= 0.048 
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An Illustrative Example 

•To illustrate the operation of ID3, consider the learning task represented 
by the training examples of below table. 

• Here the target attribute PlayTennis, which can have values yes or no for 
different days. 

• Consider the first step through the algorithm, in which the topmost node 
of the decision tree is created. 
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•ID3 determines the information gain for each candidate attribute 
(i.e., Outlook, Temperature, Humidity, and Wind), then selects the one 
with highest information gain. 
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•The information gain values for all four attributes are 
Gain(S, Outlook) = 0.246 
Gain(S, Humidity) = 0.151 
Gain(S, Wind) = 0.048 
Gain(S, Temperature) = 0.029 

•According to the information gain measure, the Outlook attribute provides the best 
prediction of the target attribute, PlayTennis, over the training examples. Therefore, 
Outlook is selected as the decision attribute for the root node, and branches are created 
below the root for each of its possible values i.e., Sunny, Overcast, and Rain. 
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•HYPOTHESIS SPACE SEARCH IN DECISION TREE LEARNING 

• ID3 can be characterized as searching a space of hypotheses for 
one that fits the training examples. 

• The hypothesis space searched by ID3 is the set of possible 
decision trees. 

• ID3 performs a simple-to complex, hill-climbing search through 
this hypothesis space, beginning with the empty tree, then 
considering progressively more elaborate hypotheses in search of a 
decision tree that correctly classifies the training data 
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By viewing ID3 in terms of its search space and search strategy, there are 
some insight into its capabilities and limitations 

1. ID3's hypothesis space of all decision trees is a complete space of finite 
discrete-valued functions, relative to the available attributes. Because every 
finite discrete-valued function can be represented by some decision tree 

ID3 avoids one of the major risks of methods that search incomplete 
hypothesis spaces: that the hypothesis space might not contain the target 
function. 

2. ID3 maintains only a single current hypothesis as it searches through the 
space of decision trees. 

For example, with the earlier version space candidate elimination method, 
which maintains the set of all hypotheses consistent with the available 
training examples. 

By determining only a single hypothesis, ID3 loses the capabilities that follow 
from explicitly representing all consistent hypotheses. 

For example, it does not have the ability to determine how many alternative 
decision trees are consistent with the available training data, or to pose new 
instance queries that optimally resolve among these competing hypotheses 
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3. ID3 in its pure form performs no backtracking in its search. Once it selects 
an attribute to test at a particular level in the tree, it never backtracks to 
reconsider this choice. 

In the case of ID3, a locally optimal solution corresponds to the decision 
tree it selects along the single search path it explores. However, this locally 
optimal solution may be less desirable than trees that would have been 
encountered along a different branch of the search. 

4. ID3 uses all training examples at each step in the search to make 
statistically based decisions regarding how to refine its current hypothesis. 

One advantage of using statistical properties of all the examples is that the 
resulting search is much less sensitive to errors in individual training 
examples. 

ID3 can be easily extended to handle noisy training data by modifying its 
termination criterion to accept hypotheses that imperfectly fit the training 
data. 
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