
INTRODUCTION

Ever since computers were invented, we have wondered whether they
might be made to learn. If we could understand how to program them
to learn-to improve automatically with experience-the impact would
be dramatic.

• Imagine computers learning from medical records which
treatments are most effective for new diseases.

• houses learning from experience to optimize energy costs based
on the particular usage patterns of their occupants.

• personal software assistants learning the evolving interests of
their users in order to highlight especially relevant stories from
the online morning newspaper.

120CS6PCMAL

INTRODUCTION

Ever since computers were invented, we have wondered whether they
might be made to learn. If we could understand how to program them
to learn-to improve automatically with experience-the impact would
be dramatic.

• Imagine computers learning from medical records which
treatments are most effective for new diseases.

• houses learning from experience to optimize energy costs based
on the particular usage patterns of their occupants.

• personal software assistants learning the evolving interests of
their users in order to highlight especially relevant stories from
the online morning newspaper.

220CS6PCMAL

Some successful applications of machine learning.

•Learning to recognize spoken words.

•Learning to drive an autonomous vehicle.

•Learning to classify new astronomical structures.

•Learning to play world-class backgammon.

320CS6PCMAL

Why is Machine Learning Important?

•Some tasks cannot be defined well, except by examples (e.g.,
recognizing people).

•Relationships and correlations can be hidden within large amounts of
data. Machine Learning/Data Mining may be able to find these
relationships.

•Human designers often produce machines that do not work as well as
desired in the environments in which they are used.

•The amount of knowledge available about certain tasks might be too
large for explicit encoding by humans (e.g., medical diagnostic).

•Environments change over time.

•New knowledge about tasks is constantly being discovered by humans. It
may be difficult to continuously re-design systems “by hand”.

420CS6PCMAL

Areas of Influence for Machine Learning

• Statistics: How best to use samples drawn from unknown probability
distributions to help decide from which distribution some new sample is
drawn?

• Brain Models: Non-linear elements with weighted inputs (Artificial Neural
Networks) have been suggested as simple models of biological neurons.

• Adaptive Control Theory: How to deal with controlling a process having
unknown parameters that must be estimated during operation?

• Psychology: How to model human performance on various learning tasks?

• Artificial Intelligence: How to write algorithms to acquire the knowledge
humans are able to acquire, at least, as well as humans?

• Evolutionary Models: How to model certain aspects of biological evolution
to improve the performance of computer programs?

520CS6PCMAL

Machine Learning was coined in 1959 by Arthur Samuel, an
American IBMer and pioneer in the field of computer gaming and artificial
intelligence.

“Machine learning is the science of getting computers to act without being
explicitly programmed.” — Stanford University
It’s a subset of AI which uses statistical methods to enable machines to
improve with experience.

Machine learning involves computers discovering how they can perform
tasks without being explicitly programmed to do so. It involves computers
learning from data provided so that they carry out certain tasks.

https://www.coursera.org/learn/machine-learning/lecture/Ujm7v/what-is-machine-learning
https://www.coursera.org/learn/machine-learning/lecture/Ujm7v/what-is-machine-learning
https://www.coursera.org/learn/machine-learning/lecture/Ujm7v/what-is-machine-learning

Machine Learning : A Definition:

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.

1420CS6PCMAL

Learning is used when:

•Human expertise does not exist (navigating on Mars)

•Humans are unable to explain their expertise (speech recognition)

•Solution changes with time (routing on a computer network)

•Solution needs to be adapted to particular cases (user biometrics)

1520CS6PCMAL

WELL-POSED LEARNING PROBLEMS

Definition: A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experience E.

To have a well-defined learning problem, we must identity these three
features:

1. the class of tasks

2. the measure of performance to be improved

3. the source of experience.

1620CS6PCMAL

WELL-POSED LEARNING PROBLEMS

A checkers learning problem:

• Task T: playing checkers
• Performance measure P: percent of games won against opponents
• Training experience E: playing practice games against itself

A handwriting recognition learning problem:

• Task T: recognizing and classifying handwritten words within images
• Performance measure P: percent of words correctly classified
•Training experience E: a database of handwritten words with given
classifications

1720CS6PCMAL

A robot driving learning problem:

•Task T: driving on public four-lane highways using vision sensors
•Performance measure P: average distance travelled before an error
(as judged by human overseer)
• Training experience E: a sequence of images and steering
commands recorded while observing a human driver

1820CS6PCMAL

Checkers game

1920CS6PCMAL

About game

•Classic Checkers is played by two players. Each player begins the game
with 12 colored discs. (Typically, one set of pieces is black and the other
white.)

•

• The board consists of 64 squares, alternating between 32 dark and 32
light squares. It is positioned so that each player has a light square on
the right side corner closest to him or her.

•A player wins the game when the opponent cannot make a move. In
most cases, this is because all of the opponent's pieces have been
captured, but it could also be because all of his pieces are blocked in.

2020CS6PCMAL

Rules of the game

•Each player places his or her pieces on the 12 dark squares closest to him or
her.
• White moves first. Players then alternate moves.
• Moves are allowed only on the dark squares, so pieces always move
diagonally. Single pieces are always limited to forward moves (toward the
opponent).
• A piece making a non-capturing move (not involving a jump) may move
only one square.
• A piece making a capturing move (a jump) leaps over one of the
opponent's pieces, landing in a straight diagonal line on the other side. Only
one piece may be captured in a single jump; however, multiple jumps are
allowed on a single turn.

2120CS6PCMAL

Rules of the game cont.

• When a piece is captured, it is removed from the board.

• If a player is able to make a capture, there is no option - the jump
must be made. If more than one capture is available, the player is free
to choose whichever he or she prefers.

• When a piece reaches the furthest row from the player who controls
that piece, it is crowned and becomes a king.

• Kings are limited to moving diagonally, but may move both forward
and backward. (Remember that single pieces, i.e. non-kings, are
always limited to forward moves.)

2220CS6PCMAL

2320CS6PCMAL

DESIGNING A LEARNING SYSTEM

1. Choosing the Training Experience

2. Choosing the Target Function

3. Choosing a Representation for the Target Function

4. Choosing a Function Approximation Algorithm

1. Estimating training values

2. Adjusting the weights

5. The Final Design

20CS6PCMAL 24

To illustrate some of the basic design issues and
approaches to machine learning, let us consider
designing a program to learn to play checkers, with
the goal of entering it in the world checkers
tournament.

20CS6PCMAL 25

1 Choosing the Training Experience

The first design choice we face is to choose the type of training
experience from which our system will learn.
The type of training experience available can have a
significant impact on success or failure of the learner.

The type(key attribute) of training experience available can have
a significant impact on success or failure of the learner.
1. whether the training experience provides direct or indirect

feedback regarding the choices made by the performance
system.

2. the degree to which the learner controls the sequence of
training examples.

3. how well it represents the distribution of examples over which
the final system performance P must be measured.

20CS6PCMAL 26

1. Whether the training experience provides direct or indirect
feedback regarding the choices made by the performance system.

For example, in learning to play checkers:

• The system might learn from direct training examples consisting of individual
checkers board states and the correct move for each.
• Alternatively, it might have available only indirect information consisting of the
move sequences and final outcomes of various games played.
• In this later case, information about the correctness of specific moves early in
the game must be inferred indirectly from the fact that the game was eventually
won or lost.
•Here the learner faces an additional problem of credit assignment, or
determining the degree to which each move in the sequence deserves credit or
blame for the final outcome.
•Credit assignment can be a particularly difficult problem because the game can
be lost even when early moves are optimal, if these are followed later by poor
moves.
•Hence, learning from direct training feedback is typically easier than learning
from indirect feedback.

20CS6PCMAL 27

2. Training experience is the degree to which the learner controls the
sequence of training examples.
•the learner might rely on the teacher to select informative board states and
to provide the correct move for each.
•Alternatively, the learner might itself propose board states that it finds
particularly confusing and ask the teacher for the correct move.
•The learner may have complete control over both the board states and
(indirect) training classifications, as it does when it learns by playing against
itself with no teacher present.
•Notice in this last case the learner may choose between experimenting with
novel board states that it has not yet considered, or honing its skill by playing
minor variations of lines of play it currently finds most promising.

20CS6PCMAL 28

3. Training experience is how well it represents the distribution of examples
over which the final system performance P must be measured.
learning is most reliable when the training examples follow a distribution
similar to that of future test examples.
• In checkers learning scenario, the performance metric P is the percent of
games the system wins in the world tournament.
•If its training experience E consists only of games played against itself,
there is an obvious danger that this training experience might not be fully
representative of the distribution of situations over which it will later be
tested. For example, the learner might never encounter certain crucial
board states that are very likely to be played by the human checkers
champion.
•it is often necessary to learn from a distribution of examples that is
somewhat different from those on which the final system will be evaluated
(e.g., the world checkers champion might not be interested in teaching the
program!). Such situations are problematic because mastery of one
distribution of examples will not necessary lead to strong performance over
some other distribution.

20CS6PCMAL 29

2 Choosing the Target Function

The next design choice is to determine exactly what type of knowledge will be
learned and how this will be used by the performance program.
• Let us begin with a checkers-playing program that can generate the legal moves
from any board state.
•The program needs only to learn how to choose the best move from among
these legal moves. This learning task is representative of a large class of tasks for
which the legal moves that define some large search space are known a priori,
but for which the best search strategy is not known.

20CS6PCMAL 30

Given this setting where we must learn to choose among the legal moves,
the most obvious choice for the type of information to be learned is a
program, or function, that chooses the best move for any given board
state.
Let us call this function ChooseMove and use the notation
ChooseMove : B M
to indicate that this function accepts as input any board from the set of
legal board states B and produces as output some move from the set of
legal moves M.
Throughout our discussion of machine learning we will find it useful to
reduce the problem of improving performance P at task T to the problem
of learning some particular targetfunction such as ChooseMove
ChooseMove is an obvious choice for the target function in our
example, this function will turn out to be very difficult to learn given the
kind of indirect training experience available to our system.

20CS6PCMAL 31

An alternative target function and one that will turn out to be easier to learn in this
setting-is an evaluation function that assigns a numerical score to any given board
state.
Let the target function V and the notation V : B  R to denote that V maps
any legal board state from the set B to some real value (we use 8 to denote the set
of real numbers). We intend for this target function V to assign higher scores to
better board states. If the system can successfully learn such a target function V,
then it can easily use it to select the best move from any current board position.

20CS6PCMAL 32

Let us therefore define the target value V(b) for an arbitrary board state b in B, as
follows:

1. if b is a final board state that is won, then V(b) = 100

2. if b is a final board state that is lost, then V(b) = -100

3. if b is a final board state that is drawn, then V(b) = 0

4. if b is a not a final state in the game, then V(b) = V(bl), where b' is the best

final board state that can be achieved starting from b and playing optimally

until the end of the game (assuming the opponent plays optimally, as well).

20CS6PCMAL 33

3. Choosing a Representation for the Target Function

let us choose a simple representation:

for any given board state, the function c will be calculated as a linear combination of
the following board features:

xl: the number of black pieces on the board

x2: the number of red pieces on the board

x3: the number of black kings on the board

x4: the number of red kings on the board

x5: the number of black pieces threatened by red (i.e., which can be captured on red's
next turn)

X6: the number of red pieces threatened by black

20CS6PCMAL 34

learning program will represent c(b) as a linear function of the

Form

where w0 through W6 are numerical coefficients, or weights, to be chosen by the
learning algorithm.

Learned values for the weights w1 through W6 will determine the relative
importance of the various board features in determining the value of

the board,

the weight w0 will provide an additive constant to the board

value.

20CS6PCMAL 35

Partial design of a checkers learning program:

Task T: playing checkers

Performance measure P: percent of games won in the world
tournament

Training experience E: games played against itself

Target function: V: Board

Target function representation

The first three items above correspond to the specification of the learning
task, whereas the final two items constitute design choices for the
implementation of the learning program

20CS6PCMAL 36

4 Choosing a Function Approximation Algorithm

In order to learn the target function f we require a set of training examples, each

describing a specific board state b and the training value Vtrain(b) for b.

each training example is an ordered pair of the form (b, V(b)).

For instance, the following training example describes a board state b in which black

has won the game (note x2 = 0 indicates that red has no remaining pieces) and

for which the target function value Vtrain(b)s therefore +100.

20CS6PCMAL 37

Function Approximation Procedure

1. Derive training examples from the indirect training experience available to the
learner

2. Adjusts the weights wi to best fit these training examples

20CS6PCMAL 38

1. Estimating training values

A simple approach for estimating training values for intermediate board
states is to assign the training value of Vtrain(b) for any intermediate board
state b to be V̂(Successor(b))

Where ,

V̂ is the learner's current approximation to V

Successor(b) denotes the next board state following b for which it is again
the program's turn to move

Rule for estimating training values

Vtrain(b) ← V̂ (Successor(b))

20CS6PCMAL 39

2. Adjusting the weights

Specify the learning algorithm for choosing the weights wi to best fit the set of
training examples {(b, Vtrain(b))}

A first step is to define what we mean by the best fit to the training data.

•One common approach is to define the best hypothesis, or set of weights, as that
which minimizes the squared error E between the training values and the values
predicted by the hypothesis.

•Several algorithms are known for finding weights of a linear function that
minimize E.

20CS6PCMAL 40

we require an algorithm that will incrementally refine the weights as new
training examples become available and that will be robust to errors in these
estimated training values.

One such algorithm is called the least mean squares, or LMS training rule. For
each observed training example it adjusts the weights a small amount in the
direction that reduces the error on this training example

LMS weight update rule :- For each training example (b, Vtrain(b))

Use the current weights to calculate V̂ (b)

For each weight wi, update it as

wi ← wi + ƞ (Vtrain (b) - V̂(b)) xi

Here ƞ is a small constant (e.g., 0.1) that moderates the size of the weight
update.

20CS6PCMAL 41

Working of weight update rule

• When the error (Vtrain(b)- V̂(b)) is zero, no weights are changed.

•When (V (trainb) - V̂(b)) is positive (i.e., when V̂(b) is too low), then each weight is
increased in proportion to the value of its corresponding feature. This will raise the
value of V̂(b), reducing the error.

• If the value of some feature xi is zero, then its weight is not altered regardless of
the error, so that the only weights updated are those whose features actually occur
on the training example board.

20CS6PCMAL 42

5. The Final Design

The final design of checkers learning system can be described by four distinct
program modules that represent the central components in many learning systems

20CS6PCMAL 43

1. The Performance System is the module that must solve the given
performance task by using the learned target function(s). It takes an instance
of a new problem (new game) as input and produces a trace of its solution
(game history) as output.

2. The Critic takes as input the history or trace of the game and produces as
output a set of training examples of the target function

20CS6PCMAL 44

3. The Generalizer takes as input the training examples and produces an output
hypothesis that is its estimate of the target function. It generalizes from the specific
training examples, hypothesizing a general function that covers these examples and
other cases beyond the training examples.

4. The Experiment Generator takes as input the current hypothesis and outputs a
new problem (i.e., initial board state) for the Performance System to explore. Its
role is to pick new practice problems that will maximize the learning rate of the
overall system.

20CS6PCMAL 45

The sequence of design choices made for the checkers program is summarized
in below figure

20CS6PCMAL 46

PERSPECTIVES AND ISSUES IN MACHINE LEARNING

Issues in Machine Learning

The field of machine learning, and much of this book, is concerned with answering
questions such as the following

• What algorithms exist for learning general target functions from specific training
examples? In what settings will particular algorithms converge to the desired
function, given sufficient training data? Which algorithms perform best for which
types of problems and representations?

• How much training data is sufficient? What general bounds can be found to relate
the confidence in learned hypotheses to the amount of training experience and the
character of the learner's hypothesis space?

20CS6PCMAL 47

•When and how can prior knowledge held by the learner guide the process of
generalizing from examples? Can prior knowledge be helpful even when it is
only approximately correct?

•What is the best strategy for choosing a useful next training experience, and
how does the choice of this strategy alter the complexity of the learning
problem?

• What is the best way to reduce the learning task to one or more function
approximation problems? Put another way, what specific functions should the
system attempt to learn? Can this process itself be automated?

• How can the learner automatically alter its representation to improve its
ability to represent and learn the target function?

20CS6PCMAL 48

Concept Learning

20CS6PCMAL 49

Learning involves acquiring general concepts from specific training
examples. Example: People continually learn general concepts or
categories such as "bird," "car," "situations in which I should study more in
order to pass the exam," etc.

Each such concept can be viewed as describing some subset of objects or
events defined over a larger set

Definition: Concept learning - Inferring a Boolean-valued function from
training examples of its input and output

What is a Concept ?

Concept of
Cats

Concept of
Birds

Concept of
Fishes

Concept of
Horses

Concept of
Dogs

A concept describes a subset of
objects or events defined over a
larger set

Concept Learning

• Acquire/Infer the definition of a general concept or
category given a (labeled) sample of positive and negative
training examples of the category

– Each concept can be thought of as a Boolean-valued (true/false
or yes/no) function
• Approximate a Boolean-valued function from examples

– Concept learning can be formulated as a problem of searching
through a predefined space of potential hypotheses for the
hypothesis that best fits the training examples

– Take advantage of a naturally occurring structure over the
hypothesis space
• General-to-specific ordering of hypotheses

learning based on symbolic representations

G

S

Training Examples for EnjoySport
• Concept to be learned

– “Days on which Aldo enjoys his favorite water sport”

• Days (examples/instances) are represented by a set of
attributes

• What is the general concept ?
– The task is to learn to predict the value of EnjoySport for an

arbitrary day based on the values of other attributes
– Learn a (a set of) hypothesis representation(s) for the concept

Days

Attributes

Concept to
be

learned

Representing Hypotheses
• Many possible representations for hypotheses h
• Here h is conjunction of constraints on attributes
• Each constraint can be

– A specific value (e.g., “Water=Warm”)
– Don’t care (e.g., “Water=?”)
– No value acceptable (e.g., “Water=Ø ”)

• For example
Sky AirTemp Humid Wind Water Forecast

< Sunny ? ? Strong ? Same >

– Most general hypothesis

– Most specific hypothesis

< ? ? ? ? ? ? >

< Ø Ø Ø Ø Ø Ø >

A hypothesis is
a vector of

constraints

All are negative
examples

All are positive
examples

Definition of Concept Learning Task

• Given
– Instances X: possible days, each described by six attributes

Sky, AirTemp, Humidity, Wind, Water, Forecast

– Target concept/function c : EnjoySport X → {0, 1}

– Hypotheses H : Conjunctions of Literals. E.g.,

– Training examples D : Positive and negative examples
(members/nonmembers) of the target function (concept)

• Determine
– A hypothesis h in H (an approximate target function) such that

h(x)=c(x) for all x in D

<?,Cold, High, ?, ?, ? >

<x1,c(x1)>, <x2,c(x2)>,…., <xm,c(xm)>

(Sunny, Cloudy, Rainy) (Warm, Cold) (Normal, High) (Strong, Week) (Warm, Cool) (Same, Change)

target concept value

“No” “Yes”

The Inductive Learning Hypothesis

• Any hypothesis found to approximate the
target function well over a sufficiently large
set of training examples

will also approximate the target function
well over other unobserved examples

– Assumption of Inductive Learning

• The best hypothesis regarding the unseen instances is
the hypothesis that best fits the observed training data

Viewing Learning As a Search Problem

• Concept learning can be viewed as the task of
searching through a large space of hypotheses

Instance space X

Sky (Sunny/Cloudy/Rainy)
AirTemp (Warm/Cold)
Humidity (Normal/High)
Wind (Strong/Weak)
Water (Warm/Cool)
Forecast (Same/Change)

=> 3*2*2*2*2*2=96 instances

Hypothesis space H

5*4*4*4*4*4=5120 syntactically
distinct hypotheses

1+4*3*3*3*3*3=973 semantically
distinct hypotheses

Each hypothesis is represented as
a conjunction of constraints

Ø

< Sunny Ø Normal Strong Cool Change>

E.g.,
< Ø Warm Normal Strong Cool Same >

Viewing Learning As a Search Problem

• Study of learning algorithms that examine
different strategies for searching the hypothesis
space, e.g.,
– Find-S Algorithm
– List-Then-Eliminate Algorithm
– Candidate Elimination Algorithm

• How to exploit the naturally occurring structure
in the hypothesis apace ?
– Relations among hypotheses , e.g.,

• General-to-Specific-Ordering

General-to-Specific-Ordering of
Hypothesis

• Many concept learning algorithms organize the search
through the hypothesis space by taking advantage of a
naturally occurring structure over it
– “general-to-specific ordering”

• h2 is more general than h1
– h2 imposes fewer constraints on instances
– h2 classify more positive instances than h1 does

– A useful structure over the hypothesis space

Suppose that h1 and h2 classify
positive examples

More-General-Than Partial Ordering

• Definition
– Let hj and hk be Boolean-valued functions defined over X.

Then hj is more general than hk (hj >g hk) if and only if

• We also can define the more-specific-than ordering

        1 1  xhxhXx jk

x satisfies hk

General-to-Specific Ordering of Hypotheses
• An illustrative example

• Suppose instances are classified positive by h1, h2 , h3

– h2 (imposing fewer constraints) are more general than h1 and h3

– h1 h3?

partial order relation
- antisymmetric, transitive

cgacgbbga hhhhhh  ,

Find-S Algorithm

• Find a maximally specific hypothesis by using the
more-general-than partial ordering to organize the search
for a hypothesis consistent with the observed training
examples

1. Initialize h to the most specific hypothesis in H
2. For each positive training instance x

– For each attribute constraint ai in h
If the constraint ai in h is satisfied by x
Then do nothing
Else replace ai in h by the next more general constraint that is satisfied

by x

3. Output hypothesis h

 ,,,,,h

Find-S Algorithm
• Hypothesis Space Search by Find-S

– Substitute a “?” in place of any attribute value in h that is
Substitute a “?” in place of any attribute value in h that is
not satisfied by the new example

no change!

Find-S Algorithm

• Why F-S never check a negative example ?

– The hypothesis h found by it is the most specific one in H

– Assume the target concept c is also in H which will cover both
the training and unseen positive examples

• c is more general than h

– Because the target concept will not cover the negative
examples, thus neither will the hypothesis h

can be represented as
a conjunction of attributes

Complaints about Find-S

• Can not tell whether it has learned concept
(Output only one. Many other consistent hypotheses may exist!)

• Picks a maximally specific h (why?)
(Find a most specific hypothesis consistent with the training data)

• Can not tell when training data inconsistent
– What if there are noises or errors contained in

training examples

• Depending on H, there might be several !

Consistence of Hypotheses

• A hypothesis h is consistent with a set of training
examples D of target concept c if and only if
h(x)=c(x) for each training example <x, c(x)> in D

• But satisfaction has another meaning
– An example x is said to satisfy a hypothesis h when h(x)=1,

regardless of whether x is positive or negative example of
the target concept

        xcxhDxcxh, DConsistent  ,

Version Space

• The version space VSH,D with respect to
hypothesis space H and training examples D is
the subset of hypotheses from H consistent
with all training examples in D

– A subspace of hypotheses

– Contain all plausible versions of the target
concepts

  DhConsistentHhVS DH ,, 

List-Then-Eliminate Algorithm
1. VersionSpace ← a list containing all hypotheses

in H

2. For each training example, <x, c(x)>
remove from VersionSpace any hypothesis h for which
h(x)≠c(x)

– i.e., eliminate hypotheses inconsistent with any
training examples

– The VersionSpace shrinks as more examples are
observed

3. Output the list of hypotheses in VersionSpace

Drawbacks of List-Then-Eliminate

• The algorithm requires exhaustively
enumerating all hypotheses in H

– An unrealistic approach ! (full search)

• If insufficient (training) data is available, the
algorithm will output a huge set of hypotheses
consistent with the observed data

Example Version Space

• Employ a much more compact representation of the version
space in terms of its most general and least general (most
specific) members

Also found by F-S

Arrows mean more-general-than relations

Specific

General

Representing Version Space

• The General boundary G, of version space
VSH,D is the set of its maximally general members

• The Specific boundary S, of version space
VSH,D is the set of its maximally specific members

• Every member of the version space lies between
these boundaries

– Version Space Representation Theorem

    sh gGgSsHhVS ggDH ,

         DgConsistentggHgDgConsistentHgG g , , 

         DsConsistentssHsDsConsistentHsS g , , 

Candidate Elimination Algorithm
• For each training example d, do

– If d is a positive example
• Remove from G any hypothesis inconsistent with d

• For each hypothesis s in S that is not consistent with d
– Remove s from S

– Add to S all minimal generalizations h of s such that

» h is consistent with d, and

» some member of G is more general than h

– Remove from S any hypothesis that is more general than
another hypothesis in S
(i.e., partial-ordering relations exist)

positive training examples force the S boundary become increasing general

Candidate Elimination Algorithm
– If d is a negative example

• Remove from S any hypothesis inconsistent with d

• For each hypothesis g in G that is not consistent with d
– Remove g from G

– Add to G all minimal specializations h of g such that

» h is consistent with d, and

» some member of S is more specific than h

– Remove from G any hypothesis that is less general than
another hypothesis in G

negative training examples force the G boundary become increasing specific

Candidate Elimination Algorithm

• G ← maximally general hypotheses in H

• S ← maximally specific hypotheses in H

 ??,?,?,?,?,0 G

  ,,,,,0 S

Should be specialized

Should be generalized

Example Trace

Example Trace

Example Trace

• G2 has six ways to be minimally specified
– Why <?,? ,Normal,?,?,? > etc. do not exist in G3 ?

< ? ? Normal ? ? ?>

?

Example Trace

• Notice that,
– S is a summary of the previously positive examples

– G is a summary of the previously negative examples

Example Trace

• S and G boundaries move monotonically closer to each
other, delimiting a smaller and smaller version space

What Next Training Example

• Learner can generate useful queries

– Discriminate among the alternatives competing
hypotheses in the current version space

If a positive hypothesis is posed:
<Sunny, Warm, Normal, Light, Warm, Same >
What if it is a negative one ?

Specific

General

20CS6PCMAL 80

INDUCTIVE BIAS

The fundamental questions for inductive inference

1. What if the target concept is not contained in the hypothesis space?

2. Can we avoid this difficulty by using a hypothesis space that includes every
possible hypothesis?

3. How does the size of this hypothesis space influence the ability of the algorithm
to generalize to unobserved instances?

4. How does the size of the hypothesis space influence the number of training
examples that must be observed?

These fundamental questions are examined in the context of the CANDIDATE-
ELIMINTION algorithm

20CS6PCMAL 81

A Biased Hypothesis Space
•Suppose the target concept is not contained in the hypothesis space H, then obvious
solution is to enrich the hypothesis space to include every possible hypothesis.

• Consider the EnjoySport example in which the hypothesis space is restricted
to include only conjunctions of attribute values. Because of this restriction, the
hypothesis space is unable to represent even simple disjunctive target
concepts such as

"Sky = Sunny or Sky = Cloudy."
• The following three training examples of disjunctive hypothesis, the algorithm
would find that there are zero hypotheses in the version space

20CS6PCMAL 82

<Sunny Warm Normal Strong Cool Change> Y
<Cloudy Warm Normal Strong Cool Change> Y
<Rainy Warm Normal Strong Cool Change> N

•If Candidate Elimination algorithm is applied, then it end up with empty
Version Space. After first two training example

S= <? Warm Normal Strong Cool Change>

•This new hypothesis is overly general and it incorrectly covers the third
negative training example! So H does not include the appropriate c.

• In this case, a more expressive hypothesis space is required.

20CS6PCMAL 83

An Unbiased Learner
•The solution to the problem of assuring that the target concept is in the hypothesis space H
is to provide a hypothesis space capable of representing every teachable concept that is
representing every possible subset of the instances X.
• The set of all subsets of a set X is called the power set of X

• In the EnjoySport learning task the size of the instance space X of days described by
the six attributes is 96 instances.
• Thus, there are 296 distinct target concepts that could be defined over this instance
space and learner might be called upon to learn.
• The conjunctive hypothesis space is able to represent only 973 of these - a biased
hypothesis space indeed

•Let us reformulate the EnjoySport learning task in an unbiased way by defining a new
hypothesis space H' that can represent every subset of instances
• The target concept "Sky = Sunny or Sky = Cloudy" could then be described as

(Sunny, ?, ?, ?, ?, ?) v (Cloudy, ?, ?, ?, ?, ?)

20CS6PCMAL 84

The Futility of Bias-Free Learning

Inductive learning requires some form of prior assumptions, or inductive bias

Definition:

Consider a concept learning algorithm L for the set of instances X.

•Let c be an arbitrary concept defined over X

• Let Dc = {(x , c(x))} be an arbitrary set of training examples of c.

• Let L (xi , Dc) denote the classification assigned to the instance xi by L after
training on the data Dc.

•The inductive bias of L is any minimal set of assertions B such that for any
target concept c and corresponding training examples Dc

20CS6PCMAL 85

The below figure explains

•Modelling inductive systems by equivalent deductive systems.

•The input-output behavior of the CANDIDATE-ELIMINATION algorithm using a
hypothesis space H is identical to that of a deductive theorem prover utilizing
the assertion "H contains the target concept." This assertion is therefore called
the inductive bias of the CANDIDATE-ELIMINATION algorithm.

• Characterizing inductive systems by their inductive bias allows modelling
them by their equivalent deductive systems. This provides a way to compare
inductive systems according to their policies for generalizing beyond the
observed training data.

20CS6PCMAL 86

20CS6PCMAL 87

20CS6PCMAL 88

DECISION TREE LEARNING

Decision tree learning is a method for approximating discrete-valued target
functions, in which the learned function is represented by a decision tree.

DECISION TREE REPRESENTATION

• Decision trees classify instances by sorting them down the tree from the root
to some leaf node, which provides the classification of the instance.

• Each node in the tree specifies a test of some attribute of the instance, and
each branch descending from that node corresponds to one of the possible
values for this attribute.

• An instance is classified by starting at the root node of the tree, testing the
attribute specified by this node, then moving down the tree branch
corresponding to the value of the attribute in the given example. This process is
then repeated for the subtree rooted at the new node.

20CS6PCMAL 89

20CS6PCMAL 90

•Decision trees represent a disjunction of conjunctions of
constraints on the attribute values of instances.

•Each path from the tree root to a leaf corresponds to a conjunction
of attribute tests, and the tree itself to a disjunction of these
conjunctions

For example, the decision tree shown in above figure corresponds
to the expression

(Outlook = Sunny ∧ Humidity = Normal)

∨ (Outlook = Overcast)

∨ (Outlook = Rain ∧ Wind = Weak)

20CS6PCMAL 91

APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING

Decision tree learning is generally best suited to problems with the following
characteristics:

1. Instances are represented by attribute-value pairs – Instances are
described by a fixed set of attributes and their values

2. The target function has discrete output values – The decision tree
assigns a Boolean classification (e.g., yes or no) to each example. Decision
tree methods easily extend to learning functions with more than two
possible output values.

3. Disjunctive descriptions may be required

4. The training data may contain errors – Decision tree learning methods
are robust to errors, both errors in classifications of the training examples
and errors in the attribute values that describe these examples.

5. The training data may contain missing attribute values – Decision tree
methods can be used even when some training examples have unknown
values

20CS6PCMAL 92

THE BASIC DECISION TREE LEARNING ALGORITHM

The basic algorithm is ID3 which learns decision trees by constructing them
top-down
ID3(Examples, Target_attribute, Attributes)

Examples are the training examples. Target_attribute is the attribute whose
value is to be predicted by the tree. Attributes is a list of other attributes that
may be tested by the learned decision tree. Returns a decision tree that
correctly classifies the given Examples.

20CS6PCMAL 93

• Create a Root node for the tree
• If all Examples are positive, Return the single-node tree Root, with label = +
• If all Examples are negative, Return the single-node tree Root, with label = -
• If Attributes is empty, Return the single-node tree Root, with label = most
common value of Target_attribute in Examples

• Otherwise Begin
• A ← the attribute from Attributes that best* classifies Examples
• The decision attribute for Root ← A
• For each possible value, vi, of A,

• Add a new tree branch below Root, corresponding to the test A = vi

• Let Examples vi, be the subset of Examples that have value vi for A
• If Examples vi , is empty

• Then below this new branch add a leaf node with label = most
common value of Target_attribute in Examples
• Else below this new branch add the subtree

ID3(Examples vi, Targe_tattribute, Attributes – {A}))
• End
• Return Root

20CS6PCMAL 94

* The best attribute is the one with highest information
gain

TABLE: Summary of the ID3 algorithm specialized to
learning Boolean-valued functions. ID3 is a greedy
algorithm that grows the tree top-down, at each node
selecting the attribute that best classifies the local
training examples. This process continues until the tree
perfectly classifies the training examples, or until all
attributes have been used

20CS6PCMAL 95

Which Attribute Is the Best Classifier?

• The central choice in the ID3 algorithm is selecting which attribute to test
at each node in the tree.

• A statistical property called information gain that measures how well a
given attribute separates the training examples according to their target
classification.

• ID3 uses information gain measure to select among the candidate
attributes at each step while growing the tree.

20CS6PCMAL 96

ENTROPY MEASURES HOMOGENEITY OF EXAMPLES

To define information gain, we begin by defining a measure called
entropy. Entropy measures the impurity of a collection of
examples.

Given a collection S, containing positive and negative examples of
some target concept, the entropy of S relative to this Boolean
classification is

Where,

p+ is the proportion of positive examples in S

p- is the proportion of negative examples in S.

20CS6PCMAL 97

Example:

Suppose S is a collection of 14 examples of some boolean concept,
including 9 positive and 5 negative examples. Then the entropy of S
relative to this boolean classification is

•The entropy is 0 if all members of S belong to the same class

•The entropy is 1 when the collection contains an equal number of
positive and negative examples

•If the collection contains unequal numbers of positive and negative
examples, the entropy is between 0 and 1

20CS6PCMAL 98

INFORMATION GAIN MEASURES THE EXPECTED REDUCTION IN ENTROPY

•Information gain, is the expected reduction in entropy caused by partitioning
the examples according to this attribute.

•The information gain, Gain(S, A) of an attribute A, relative to a collection of
examples S, is defined as

Example: Information gain
Let, Values(Wind) = {Weak, Strong}

S = *9+ , 5−+
Sweak = *6+ , 2−+

Sstrong = *3+ , 3−+
Information gain of attribute Wind:
Gain(S, Wind) = Entropy(S) − 8/14 Entropy (SWeak) − 6/14 Entropy (SStrong)

= 0.94 – (8/14)* 0.811 – (6/14) *1.00
= 0.048

20CS6PCMAL 99

20CS6PCMAL 100

An Illustrative Example

•To illustrate the operation of ID3, consider the learning task represented
by the training examples of below table.

• Here the target attribute PlayTennis, which can have values yes or no for
different days.

• Consider the first step through the algorithm, in which the topmost node
of the decision tree is created.

20CS6PCMAL 101

20CS6PCMAL 102

20CS6PCMAL 103

20CS6PCMAL 104

20CS6PCMAL 105

20CS6PCMAL 106

20CS6PCMAL 107

20CS6PCMAL 108

20CS6PCMAL 109

20CS6PCMAL 110

20CS6PCMAL 111

20CS6PCMAL 112

20CS6PCMAL 113

20CS6PCMAL 114

20CS6PCMAL 115

20CS6PCMAL 116

20CS6PCMAL 117

20CS6PCMAL 118

20CS6PCMAL 119

20CS6PCMAL 120

20CS6PCMAL 121

20CS6PCMAL 122

20CS6PCMAL 123

20CS6PCMAL 124

20CS6PCMAL 125

20CS6PCMAL 126

20CS6PCMAL 127

20CS6PCMAL 128

20CS6PCMAL 129

20CS6PCMAL 130

20CS6PCMAL 131

20CS6PCMAL 132

20CS6PCMAL 133

20CS6PCMAL 134

20CS6PCMAL 135

20CS6PCMAL 136

20CS6PCMAL 137

20CS6PCMAL 138

20CS6PCMAL 139

20CS6PCMAL 140

20CS6PCMAL 141

20CS6PCMAL 142

20CS6PCMAL 143

20CS6PCMAL 144

20CS6PCMAL 145

•ID3 determines the information gain for each candidate attribute
(i.e., Outlook, Temperature, Humidity, and Wind), then selects the one
with highest information gain.

20CS6PCMAL 146

•The information gain values for all four attributes are
Gain(S, Outlook) = 0.246
Gain(S, Humidity) = 0.151
Gain(S, Wind) = 0.048
Gain(S, Temperature) = 0.029

•According to the information gain measure, the Outlook attribute provides the best
prediction of the target attribute, PlayTennis, over the training examples. Therefore,
Outlook is selected as the decision attribute for the root node, and branches are created
below the root for each of its possible values i.e., Sunny, Overcast, and Rain.

20CS6PCMAL 147

20CS6PCMAL 148

20CS6PCMAL 149

•HYPOTHESIS SPACE SEARCH IN DECISION TREE LEARNING

• ID3 can be characterized as searching a space of hypotheses for
one that fits the training examples.

• The hypothesis space searched by ID3 is the set of possible
decision trees.

• ID3 performs a simple-to complex, hill-climbing search through
this hypothesis space, beginning with the empty tree, then
considering progressively more elaborate hypotheses in search of a
decision tree that correctly classifies the training data

20CS6PCMAL 150

20CS6PCMAL 151

By viewing ID3 in terms of its search space and search strategy, there are
some insight into its capabilities and limitations

1. ID3's hypothesis space of all decision trees is a complete space of finite
discrete-valued functions, relative to the available attributes. Because every
finite discrete-valued function can be represented by some decision tree

ID3 avoids one of the major risks of methods that search incomplete
hypothesis spaces: that the hypothesis space might not contain the target
function.

2. ID3 maintains only a single current hypothesis as it searches through the
space of decision trees.

For example, with the earlier version space candidate elimination method,
which maintains the set of all hypotheses consistent with the available
training examples.

By determining only a single hypothesis, ID3 loses the capabilities that follow
from explicitly representing all consistent hypotheses.

For example, it does not have the ability to determine how many alternative
decision trees are consistent with the available training data, or to pose new
instance queries that optimally resolve among these competing hypotheses

20CS6PCMAL 152

3. ID3 in its pure form performs no backtracking in its search. Once it selects
an attribute to test at a particular level in the tree, it never backtracks to
reconsider this choice.

In the case of ID3, a locally optimal solution corresponds to the decision
tree it selects along the single search path it explores. However, this locally
optimal solution may be less desirable than trees that would have been
encountered along a different branch of the search.

4. ID3 uses all training examples at each step in the search to make
statistically based decisions regarding how to refine its current hypothesis.

One advantage of using statistical properties of all the examples is that the
resulting search is much less sensitive to errors in individual training
examples.

ID3 can be easily extended to handle noisy training data by modifying its
termination criterion to accept hypotheses that imperfectly fit the training
data.

20CS6PCMAL 153

References

•Machine Learning, M M. Mitchell, McGraw Hill
•Internet(WWW)

