Dr. SELVA KUMAR S
B.M.S COLLEGE OF ENGINEERING

AGENDA

= NOSQL in CLOUD
= Exploring ready-to-use NoSQL databases in the cloud

= Leveraging Google AppEngine and its scalable data store
= Using Amazon SimpleDB

= Parallel Processing with Map Reduce

= BigData with Hive

EXPLORING READY-TQ-USE NOSQL DATABASES IN THE CLOUD

= Google and Amazon, have achieved
= High availability
= Ability to concurrently service millions of users
= Scaling out horizontally among multiple machines
= Spread across multiple data centers.

= Success stories of large-scale web applications like those from Google and Amazon have
proven that

= Horizontally scaled environments
= NoSQL solutions
= Available on-demand

= Provisioned as required have been christened as the “cloud.”

= |f scalability and availability is your priority, NoSQL in the cloud is possibly the ideal setup. ,®

NOSQL OPTIONS IN THE CLOUD

=Google’s Bigtable data store
=Amazon SimpleDB

GOOGLE APP ENGINE DATA STORE

=The Google App Engine (GAE) provides a sandboxed
deployment environment for applications.

=|t is written using:
=Python programming
=Java Virtual Machine (JVM)

=Google provides developers with a set of rich APIs and an
SDK to build applications for the app engine.

Google

app engine

5

OVERVIEW P

= Google App Engine (GAE) is a Platform as a Service (PaaS) cloud computing
platform for developing and hosting web applications in Google-managed data
centers.

= Google’s Platform to build web applications on Cloud.

= Easy to build.

= Easy to maintain.

= Easy to scale as the traffic and storage needs grow.
= Automatic scaling and load balancing.

= Transactional data store model.

= Free for up to 1 GB of storage and enough CPU and bandwidth to support 5 million
page views a month. 10 Applications per Google account.

@

WHY APP ENGINE?

=Lower total cost of ownership

=Rich set of APIs

=Fully featured SDK for local development
=Ease of Deployment

ARCHITECTURE OF APP ENGINE

Google ..:),

Google Wab Toolkit (GWT)
Mashup Editor Google Gaears
Client
Capabilities Google Gadgets Others
¥ /
Google App Engine (GAE)
Cloud Python & Django
Computing
Services Dynamic, Scalable Runtime
r GAE Datastore GData
Google Accounts
Support
Ger\lices Social Graph API Others
>

L

PROGR

=Java:

- App Engine runs JAVA apps on a JAVA 7 virtual machine
(currently

= supports JAVA 6 as well).

- Uses JAVA Servlet standard for web applications:
- WAR (Web Applications ARchive) directory structure.
« Servlet classes
- Java Server Pages (JSP)
- Static and data files
- Deployment descriptor (web.xml)
- Other configuration files

AMMING LANGUAGES SUPPORTED

PROGRAMMING LANGUAGES SUPPORTED

Python:
- Uses WSGI (Web Server Gateway Interface) standard.

- Python applications can be written using:
- Webapp2 framework
- Django framework
- Any python code that uses the CGI (Common Gateway Interface)
standard.

PROGRAMMING LANGUAGES SUPPORTED

PHP (Experimental support):

- Local development servers are available to anyone for developing
and testing local applications.

=Google’s Go:

- Gois an Google’s open source programming environment.
- Tightly coupled with Google App Engine.

- Applications can be written using App Engine’s Go SDK.

DATA STORAGE

App Engine Datastore:

« NoSQL schema-less object based data storage, with a query engine and
= atomic transactions.
- Data object is called a “Entity” that has a kind (~ table name) and a set of

= properties (~ column names).
- JAVA JDO/ JPA interfaces and Python datastore interfaces.

=Google cloud SQL:

- Provides a relational SQL database service.
 Similar to MySQL RDBMS.

DATA STORAGE

=Google cloud store:

- RESTful service for storing and querying data.

- Fast, scalable and highly available solution.

- Provides Multiple layers of redundancy. All data is replicated to multiple
= data centers.

- Provides different levels of access control.
- HTTP based APIs.

GOOGLE DATA STORE ARCHITECTURE

Google Applications ‘ User Applications ‘
API 0 “ API 1 ‘ Datastore ‘
Java Other Language Python

Bigtable
Master server
Logical table management, load balancing, garbage collection

Tablet Tablet | Tablet
Server 0 Server 1 Server n
Google File System I

GOOGLE DATA STORE ARCHITECTURE

8

1 2 worker task
job submit job details status update
/_3\
job ID
47
1"
job result

WHEN TO USE GOOGLE RPP ENGINE

= Use App Engine when:

- You don’t want to get troubled for setting up a server.

- You want instant for-free nearly infinite scalability support.

- Your application’s traffic is spiky and rather unpredictable.

- You don't feel like taking care of your own server monitoring tools.

- You need pricing that fits your actual usage and isn't time-slot based
(App engine provides pay-per-drink cost model).

- You are able to chunk long tasks into 60 second pieces.

- You are able to work without direct access to local file system.

GOOGLE CLOUD PLI

https://console.cloud.google.com/appengine/start?project=instagram-clone-313b6 A s ® & @ u© & = |
Google Cloud e comhighin-challenge v Q, Search Products, resources, docs (/) & e >
<(@- App Engine App Engine I LEARN & Back to previous content

Recommended for you

Iil Dashboard

App Engine overview &

Overview of the components of an

J Services Welcome to App Engine application: services, versions, instances,

application requests, and limits

@ Versions Build scalable apps in any language on Google's infrastructure
Choosing an App Engine environment &
Instances i i i
2 @ Your App Engine application has been created Run applications in App Engine using the
= Task queues Let us help you deploy to your application by pointing you at the relevant resources standard or flexible environment.
hased on your programming language. Structuring web services in App
(Cronjobs Engine
) GET STARTED Understand how to structure the services
Security scans and related resources of your App Engine
app.
Firewall rules

Installing an SDK for App Engine &

[Quotas Set up your computer for developing,
deploying, and managing your apps in App
& Memcache Engine
i icing @
o, Search App Engine pricing &
Overview of the different pricing options
o Settings for App Engine

Quotas in App Engine &

Understand different types of quotas

How instances are managed &
Release Notes

Understand instance scaling types, how
dynamic instances are scaled, and the life-
< cycle of an instance.

)

Google Cloud gs com-ighin-challenge « | Q Search Products, resources, docs (/)

<@©- App Engine Get started ®1 LEARN
Il Dashboard

2 Sevices Resources Deploy with Google Cloud SDK

Language
Python - DOWNLOAD THE CLOUD SDK
[¥) Versions

Environment
Standard v ‘

Instances (Initialize your SDK

Task queues $ geloud init D
Read App Engine Python Standard Environment Documentation [£.

Cron jobs
: Visit Github [4 for Python Standard Environment code samples.)
I Deploy to App Engine

e @

Security scans

S gcloud app deploy D
Firewall rules

Quotas

I'LL DO THIS LATER

Memcache

Search

%t °o W

Settings

= Google Cloud ge comighin-challenge v Q Search Products, resources, docs (/)

“y Welcome

You're working in bmsce.ac.in *» com-highin-challenge

L
Project number; 55724027418 I Project ID: instagram-clone-313b6 [0
Dashboard Recommendations
Privacy Policy - Terms of Service
CLOUD SHELL . i . N
= Terminal (instagram-clone-313bé) X + ~ # Open Editor @ = & : 4 X

elcome to Cloud Shell! Type "help™ to get started.

our Cloud Platform project in this session is set to instagram-clone-313bé6.
se “gcloud config set project [PROJECT ID]” to change to a different project.
elva_cseficloudshell:~ (instagram-clone-313b6) 5 D

Select from BMSCEACIN +

NEW PROJECT

Q, Search projects and folders

RECENT

STARRED
Name
My Project @

com-highin-challenge @

bmsce.ac.in 0

GoogleMeetintegration @

schools-nearby @

My Maps Project @

AndroidProject @

My Project @

My Project @

D

dulcet-theory-202209
instagram-clone-313b6
475754598649
spartan-amphora-324608
angelic-coder-267906
dev-antler-267906
androidproject-202205
absolute-point-202209

meta-wording-202208

CANCEL

OPEN

Create app

G Select a location — @) Get started

Region

Region is permanent.

asia-south1

NEXT :

Select a region *
[)

= Google Cloud 2 MyProject v

Q, Search Products, resources, docs (/)

DASHBOARD ACTIVITY RECOMMENDATIONS

Project info

Project name
My Project

Project number
794191271085

Project ID
dulcet-theory-202209

ADD PEOPLE TO THIS PROJECT

Go to project settings

APT APls

Requests (requests/sec)

A Nodatais available for the selected time frame.

TPM 7:15

© 9

«©

&

¢)

Resources
BigQuery
Data warehouse/analytics

sqQL
Managed MySQL, PostgreSQL, SQL Server

Compute Engine
VMs, GPUs, TPUs, Disks

Storage
Multi-class multi-region object storage

Cloud Functions
Event-driven serverless functions

Arm Ernaina

—> Goto APIs overview

7:4

0.8

0.6

04

0.2

/' CUSTOMIZE

&

Google Cloud Platform status

Multiple Products
Global: Cloud VPN tunnel creation failures via Terraform
Began at 2022-12-08 (07:25:23)

All times are US/Pacific
Data provided by status.cloud.google.com

Go to Cloud status dashboard

¥

Monitoring

Create my dashboard
Set up alerting policies

Create uptime checks

View all dashboards

Go to Monitoring

APT

Error Reporting

No sign of any errors. Have you set up Error Reporting?

Google Cloud e My Project v

DASHBOARD ACTIVITY RECOMMENDATIONS

.‘Q Deploy a prebuilt solution

'l' Add dynamic logging to a running application
@) Monitor errors with Error Reporting

)) Deploy a Hello World app

E Take a VM quickstart

E Create a Cloud Storage bucket

(] Create a Cloud Function

&) Install the Cloud SDK

\ | PRV [P | R Sp—_— -
CLOUD SHELL
. s Terminal (dulcet-theory-202209) X -+ ~

r the tab for your language.
(gcloud. app.deploy) [/home/selva cse] could not be identified as a wvalid source directory or
selva cse@cloudshell:~ (selwvachat-4b4d%a)5 g
—bash: g: command not found
selva_csefcloudshell:~ (selvachat-4b49a)$ gcloud config set project dulcet-theory-202209
Updated property [core/project].

selva cse@cloudshell:~ (duolecet-theory-202209)5 mkdir helloworld

selva csef@cloudshell:~ (dulcet-theory—202209)5 cd helloworld
selva_cse@cloudshell:~, | {dulcet-theory-202209)5% edit main.py

selva csef@cloudshell:- (dulcet-theory-202209)$5 edit requirements.txt
selva csef@cloudshell:~, | (dulcet-theory-202209)5 gcloud run deploy
Deploying from source. To deploy a container use [-—image]. See https://cloud.google.com/run/docs/deploying-source—code for more details.

o ~
o Fa il s T

Q, Search Products, resources, docs (/)

P

2 days ago
—> Read all nev

Ei Read all rele

B Docume

Learn about
Learn about

Learn about

"

Open Editor

= The app engine provides a SQL-like query language called GQL.
= GQL queries on entities and their properties.
= Entities manifest as objects in the GAE Python and the Java SDK.

= GQL is quite similar to object-oriented query languages that are
used:

= query, filter, and get model instances and their properties.

EXAMPLE: PYTHON DATASTORE API

from google.appengine.ext import db

class Person(db.Model):
name = db.StringProperty()
age = db.IntegerProperty()

We use a unique username for the Entity's key.

amy = Person(key_name='amym’', name='Amy', age=48)

amy.put()

Person(key name='bettyd’, name='Betty', age=42).put()

Person(key name='charliec', name="'Charlie’, age=32).put()
Person(key _name='charliek’, name='Charlie', age=29).put()
Person(key name='eedna’, name='Edna’, age=20).put()

Person(key name='fredm', name='Fred’, age=16, parent=amy).put()
Person(key _name='georgemichael', name='George').put()

€

EXAMPLE

= SELECT * FROM Person WHERE age >= 18 AND age <= 35
= SELECT * FROM Person ORDER BY age DESC LIMIT 3

= SELECT * FROM Person WHERE name IN ('Betty', 'Charlie")
= SELECT name FROM Person

= SELECT __key__ FROM Person WHERE age = NULL

EXAMPLE CONTD.

import datetime
from google.appengine.ext import db

class Employee(db.Model):
first name = db.StringProperty()
last_name = db.StringProperty()
hire_date = db.DateProperty()
attended_hr_training = db.BooleanProperty()

employee = Employee(first name="Antonio’,
last name="Salier")

employee.hire_date = datetime.datetime.now().date()
employee.attended_hr_training = True

employee.put()

KEY NAME ARGUM

employee

employee
employee

employee

= Employee(key_name='asalieri’,
first_name='Antonio’,
last_name='Salieri’)

ENT

.hire_date = datetime.datetime.now().date()

.attended_hr_training = True

.put()

employee

employee
employee

employee

= Employee(first_name='Antonio’,
last_name='Salieri’)

.hire_date = datetime.datetime.now().date()
.attended_hr_training = True

.put()

PARENT ENTITY

Create Employee entity
employee = Employee()
employee.put()

Set Employee as Address entity's parent directly...
address = Address(parent=employee)

..or using its key
e_key = employee.key()
address = Address(parent=e_key)

Save Address entity to datastore
address.put()

RETRIEVING AN ENTITY

= address_k = db.Key.from_path('Employee’, 'asalieri', 'Address', 1)
= address = db.get(address_k)

= To update an existing entity:

= Modify the attributes of the object

= Call its put() method.

= The object data overwrites the existing entity.

= The entire object is sent to Datastore with every call to
put().

DELETING AN ENTITY

employee_k = db.Key.from_path('Employee’, 'asalieri’)

employee = db.get(employee_k)
= H ..

employee.delete()

address_k = db.Key.from_path('Employee’, 'asalieri’, 'Address', 1)
= db.delete(address_k)

class Person(db.Model):
first_name = db.StringProperty()

last_name = db.StringProperty()
city = db.StringProperty()
birth_year = db.IntegerProperty()
height = db.IntegerProperty()

Query interface constructs a query using instance methods

q = Person.all()

q.filter("last_name =", "Smith")

q.filter("height <=", max_height)

q.order("-height")

GglQuery interface constructs a query using a GQL query string

q = db.GglQuery("SELECT * FROM Person " +
"WHERE last_name = :1 AND height <= :2 " +
"ORDER BY height DESC",
"Smith", max_height)

Query is not executed until results are accessed
for p in q.run(limit=5):
print "%s %s, %d inches tall" % (p.first_name, p.last_name, p.height)

L

EXAMPLE: JAVA DATASTORE API

import java.io.IOException;
import java.util.cCa 5
import java.util.Date;

import java.utlil.GregorianCalendar;
import javax.servlet.htt

import javax.servlet.htt

import javax.servlet.htt

import com.google.a

import com.google.a

import com.google.a

Entity book = new Entity("Book");

7("title", "The Grapes of Wrath"™);

- P B | [y | . |] " 1 o AR e S P LI
book 7 ("author", John Steinbeck"™);

- e | . rrpl oy M 1Q20Y -
DooOK ¥Yi copyrigntiear™, L- x2);

AMAZON SIMPLEDE

= Amazon SimpleDB is a ready-to-run database alternative to the app engine
data store.

= Amazon SimpleDB is a web service for running queries on structured data in
real time.

= Amazon SimpleDB requires no schema, automatically indexes your data and
provides a simple API for storage and access.

= This eliminates the administrative burden of data modeling, index
maintenance, and performance tuning.

= This service works in close conjunction with Amazon Simple Storage Service
(Amazon S3) and Amazon Elastic Compute Cloud (Amazon EC2), collectively
providing the ability to store, process and query data sets in the cloud.

SIMPLEDE

=Domain
Item

DATA MODEL

DOMAINS, ATTRIBUTES AND ITEMS

« A domain is like a table.
= An attribute is analogous to a field or column.
= An item is similar to a database row.

«We can change the structure of a domain easily, since it
has no schema.

 In addition, attributes are of string type and can contain
multiple values.

DATA LOADING

» SimpleDB can be queried in one of the following ways:

» Making RESTful get and post requests over HTTP or
HTTPS.

« Making SQL like query using a programming language.

USING REST T0 LOAD DATA

= This shows a REST request that puts
three attributes and values for an item
named Item123 into the domain
named MyDomain.

POST / HTTP/1.1

Content-Type: application/x-www-form-urlencoded;
Host: sdb.amazonaws.com

Action=PutAttnbutes

&DomainName=MyDomain

&itemName=Item123
&Attnbute.1.Name=Color8Attnbute.1.Value=Blus
&Attnbutes. 2 Name=Size@Attnbute.2. Value=Med
&Attnbutes. 3 Name=Pnced8Attnbute. 3. Value=0014 .09
SAWSAccessKeyld=access_key
&Version=2009-04-15

&Signature=vahd_signature

&SignatureVersion=2
&SgnatureMethod=HmacSHA256

&Timestamp=2010-01-25T15%3A01%3A28-07%3A00

charset=utf-

L

RESPONSE TO THE REQUEST

<PutAttnbutesResponse>
<ResponseMetadata>
<StatusCode>Success</StatusCode>
<Requestld>f6820318-9658-4a9d-89f8-b067c90904fc </Requestid>
<BoxUsage>0.0000219907 </BoxUsage>
</ResponseMetadata>

</PutAttnbutesResponse>

TYPES OF QUERIES

= Simple Queries:

= These are the usual queries we perform like in any database:

= Examples: select * from mydomain where Title = 'The Right Stuff’
select * from mydomain where Year > '1985'

= Range Queries:

= Amazon SimpleDB enables us to execute more than one comparison against
attribute values within the same predicate.

= This is most commonly used to specify a range of values.
= select * from mydomain where Year between '1975' and '2008'

= select * from mydomain where (Year >'1950' and Year < '1960') or Year like '193%'
or Year ='2007/"

QUERIES ON ATTRIBUTES WITH MULTIPLE VALUES

= Amazon SimpleDB allows you to associate multiple values with a
single attribute.

= Each attribute is considered individually against the comparison
conditions defined in the predicate.

= Example: select * from mydomain where Keyword = 'Book' and
Keyword = 'Hardcover’

= Retrieve all items that have the Keyword attribute as both "Book"
and "Hardcover."

= Each value is evaluated individually against the predicate
expression.

MULTIPLE ATTRIBUTE QUERIES

= Multiple attribute queries work by producing a set of item names
from each predicate and applying the intersection operator.

= The intersection operator only returns item names that appear in
both result sets.

= select * from mydomain where Keyword = 'Book' intersection
Keyword = 'Hardcover’

= The first predicate produces 100, 200, and 50. The second produces
50.

= The result returns 50 counts. The intersection operator returns
results that appear in both queries.

QUERY OPTIMIZATION

 Amazon does the query optimization on its own and lets
the users to just store the data and query it.

«The 10gb domain limit was created with optimization in
mind.

* The user can optimize it themselves by splitting data to
multiple domains.

= In order to improve the performance, we can partition our
dataset among multiple domains to parallelize queries
and have them operate on smaller individual datasets.

@,

PARTITIONING THE DATA

= Applications to parallelize queries:

= Natural Partitions— The data set naturally partitions along some
dimension. For example, a Universit¥ catalog might be partitioned
in the "Grad", "UnderGrad" and "Staff" domains. Although we can
store all the product data in a single domain, partitioning can
iImprove overall performance.

= High Performance Application— This can be useful when the

application requires higher throughput than a single domain can
provide.

« Large Data Set—This can be useful when timeout limits are reached
because of the data size or query complexity.

RGGREGATION AND JOINS

= If we need aggregation, SimpleDB is not the right solution.

= It is built around the school of thought that the DB is just a key value
store, and aggregation should be handled by an aggregation
process that writes the results back to the key value store.

= The count() function is recently introduced to the set of functions.

= Since only 2500 data records will be displayed per query we should
make sure that the count function does not exceed this range.

= We cannot perform joins in SimpleDB as we can execute a query
against a single domain only and this is one of the limitations
presentin it.

DATA INDEXING

= Amazon does not provide enough information about how indexes
are created or managed on SimpleDB, except for the fact that they
are automatically created and managed.

= SimpleDB users do not have any control over it.

= Following are some of the salient features of indexes:

= Domain keys are indexed.

= Data are indexed when we enter or modify them in the database.
= SimpleDB takes all data as input and indexes all the attributes.

REPLICATION

= Asynchronous replication is supported.

 Amazon SimpleDB creates and manages multiple

geographically distributed replicas of the data
automatically.

= Every time we store a data item, multiple replicas are

created in different data centers within the region we
select.

EXAMPLE

from __future__ import print_function
import boto3

def quote(string):

return string.replace("'", "''").replace(

def put_attributes(sdb, domain, id, color):
response = sdb.put_attributes(

DomainName=domain,

ItemName=id,

Attributes=|

{

Name': 'color',
Value': color,
Replace': True

],
)

print(response)

) .replace('

)

L

if _name_=="_ _main_"
domain = "TEST_ DOMAIN"
sdb = boto3.client('sdb")
response = sdb.create_domain(
DomainName=domain
)
print(response)
response = sdb.list domains(
)
print("Current domains: %s" % response['DomainNames'])
put_attributes(sdb, domain, "id1", "red")
put_attributes(sdb, domain, "id2", "redblue™)
put_attributes(sdb, domain, "id3", "blue")
response = sdb.select(
SelectExpression="select * from %s where color like "%%%s%%"" %
(domain, quote('blue")),

)

print(response)

response = sdb.delete_domain(
DomainName=domain

)

print(response)

C m () https://aws.amazon.com/simpledb/ A T8 ® 8 @@ v o = G

aWS Contact Us Support» English= My Account~ Sign In

—

Create an AWS Account

reilnvent Products Solutions Pricing Documentation Learn Partner Network AWS Marketplace Customer Enablement Events Explore More Q

PRODUCTS & SERVICES

Amazon SimpleDB
Product Details

Pricing

Getting Started
Developer Resources
FAQs

RELATED LINKS
Documentation

Release Notes

Discussion Forum

Get Started for Free

Create Free Account

Create Free Account »

Amazon SimpleDB

Amazon SimpleDB is a highly available NoSQL data store that offloads the work of database administration.

Developers simply store and query data items via web services requests and Amazon SimpleDB does the rest.

Unbound by the strict requirements of a relational database, Amazon SimpleDB is optimized to provide high
availability and flexibility, with little or no administrative burden. Behind the scenes, Amazon SimpleDB
creates and manages multiple geographically distributed replicas of your data automatically to enable high
availability and data durability. The service charges you only for the resources actually consumed in storing
your data and serving your requests. You can change your data model on the fly, and data is automatically
indexed for you. With Amazon SimpleDB, you can focus on application development without worrying about
infrastructure provisioning, high availability, software maintenance, schema and index management, or

performance tuning.

Benefits

Low touch

The service allows you to focus fully on value-added application development, rather than arduous and time-consuming database

MAP REDUCE

ADVANTAGE

Slave A

Data> T T T TP

Slave B
» Data is processed in parallel
S TT—— e atll
» Processing becomes fast
Master

&
Slave C Slave D @

EXAMPLE

The Overall MapReduce Word Count Process

Input Splitting Mapping Shuffling Reducing Final Result
List(K2, V2) K2, List(V2)
K1, V1
List(K3, V3)
m—

Deer Bear River
Car Car River Car Car River Car, 1
Deer Car Bear River, 1

Deer, 1
5 ar, 1
Bear, 1

INPUT/OUTPUT OF MAPREDUCE]JOB

Input : a set of (key values) stored in files
key: document ID
value: a list of words as content of each document

Output: a set of (key values) stored in files
key: wordID
value: word frequency appeared in all documents

MapReduce function specification:
map(String input_key, String input_value):
reduce(String output_key, Iterator intermediate values):

PSEUDO CODE

map(String input_key, String input_value):
// input_key: document name
// input_value: document contents
for each word w 1n input_value:
EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate values):
// output_key: a word
// output_values: a list of counts
int result = 0;
for each v in intermediate values:
result = result + Parselnt(v);
Emit(output_key, AsString(result));

JAVA CODE

public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1); / a mapreduce int class
private Text word = new Text(); /a mapreduce String class

public void map(Object key, Text value, Context context

) throws IOException, InterruptedException { // key 1s the offset of
current record 1n a file

StringTokenizer itr = new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) { // loop for each token
word.set(itr.nextToken()); //convert from string to token
context.write(word, one); // emit (key,value) pairs for reducer

-

JAVR CODE CONTINUED.

public static class IntSumReducer
extends Reducer<Text,IntWritable, Text,IntWritable> {

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,

Context context
) throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

;

result.set(sum); //convert “int” to IntWritable

context.write(key, result); //emit the final key-value result

SYSTEMS SUPPORT FOR MAPREDUCE

MapReduce

R 77

Distributed File Systems (Hadoop,
Google FS)

HADOOP DFS WITH MAPREDUCE

Chent

Hadoop Cluster

Cluster Machine

MapReduce
layer

HDFS
layer

master slave
task task

tracker tracker
job

tracker

name
node

data
node

—_—

-

multi-node cluster

L

DEMONS FOR HADCOP/MAPREDUCE

® Following demons must be running
(use jps to show these
Java processes)
® Hadoop
— Name node (master)

MapReduce
— Secondary name node fayer
— data nodes sEsssssssEEEEns
® Mapreduce E’;rﬁ
— Task tracker
— Job tracker

master

slave

task
tracker

@

job
tracker

name
node

data

task
tracker

ﬂ.

@

-

node

—

data
node

multi-node cluster

L

MAPREDUCE EXECUTION FLOW

Update

AN

,
%_.

Splits

Job Tracker

sﬁu\\\\<§s@ns

ASSIgnSf

- T-1-¥-] j Map “
Data node "
——n

coocoo [Map

Datanode —\/ ,
Local Write

=
ocoocoo Map
Data node “~—-

Local Write

HDFS
Blocks

Job Status

QPa, Read

RPC Read

Reduce

HDFS
Blocks

)

~Datanode

i / Reduce

—0
-

)

v

Data node

Output
files

MAPREDUCE: EXECUTION DETAILS

® Input reader
— Divide input into gplits, assign each split to a Map task
® Map task for data parallelism
— Apply the Map function to each record in the split
— Each Map function returns a list of (key, value) pairs
® Shuffle/Partition and Sort
— Shuffle distributes sorting & aggregation to many reducers
— All records for key k are directed to the same reduce processor
— Sort groups the same keys together, and prepares for aggregation
® Reduce task for data parallelism
— Apply the Reduce function to each key
— The result of the Reduce function is a list of (key, value) pairs

MAPREDUCE WITH HBASE

= HBase provides a TableInputFormat, to which you provided a table scan, that splits
the rows resulting from the table scan into the regions in which those rows reside.

= The map process is passed an ImmutableBytesWritable that contains the row key
for a row and a Result that contains the columns for that row.

= The map process outputs its key/value pair based on its business logic in whatever
form makes sense to your application.

= The reduce process builds its results but emits the row key as an
ImmutableBytesWritable and a Put command to store the results back to HBase.

= Finally, the results are stored in HBase by the HBase MapReduce infrastructure.

HBASE MAPREDUCE INTEGRATION

H—0H RecordReader —_—
itz ——— Key Class 1 [Value Class 1
i — Mapper
pitl] | =—= Key Class 2 [Value Class 2
———— Shuffle Sart
— Key Class 2 [Value Class 2
T=====11 Reducer
— Key Class 3 [Value Class 3
Splitn —
Key Class 3 [Value Class 3
RecordWriter
HDF5 MapReduce Framework

IMPLEMENTATION OF MAPREDUCE

= Input format

= First it splits the input data, and then it returns a RecordReader instance that
defines the classes of the key and value objects, and provides a next() method
that is used to iterate over each input record.

l'wﬂ'um fdﬂw!‘umim
+getSplits(): InputSplitf0..°] +getSplits(): TableSplit(0.*)
+createRecordReader(). RecordReader +createRecordReader(): TableRecor dReader

IMPLEMENTATION OF MAPREDUCE

= Mapper

= |n this step, each record read using the RecordReader is processed using the
map() method.

Mapper

TableMapper I:IentitﬂableMappa'

map()

IMPLEMENTATION OF MAPREDUCE

= Reducer

= The Reducer stage and class hierarchy is very similar to the Mapper stage. This
time we get the output of a Mapper class and process it after the data has been
shuffled and sorted.

Reducer

TableReducer j&——{ IdentityTableReducer

reduce()

IMPLEMENTATION OF MAPREDUCE

= OutputFormat

= The final stage is the OutputFormat class, and its job is to persist the data in
various locations. There are specific implementations that allow output to files, or
to HBase tables in the case of the TableOutputFormat class. It uses a TableRecord
Writer to write the data into the specific HBase output table.

RPACHE MAHOUT

= Apache Mahout is a project of the Apache Software Foundation which is
implemented on top of Apache Hadoop and uses the MapReduce paradigm.

= [t is also used to create implementations of scalable and distributed
machine learning algorithms that are focused in the areas of

= Clustering,
= Collaborative filtering and
= Classification.

= Mahout contains Java libraries for common math algorithms and operations
focused on statistics and linear algebra, as well as primitive Java
collections.

COMPONENTS OF MAHOUT

= To build a recommender engine mahout provides the following components:
- DataModel

- UserSimilarity

« ItemSimilarity

- UserNeighborhood

« Recommender

ARCHITECTURE OF RECOMMENDER ENGINE

i

BUILDING A RECOMMENDER USING MAHOUT

= DataModel datamodel = new FileDataModel(new File("input file"));

= UserSimilarity similarity = new PearsonCorrelationSimilarity(datamodel);

= UserNeighborhood neighborhood = new ThresholdUserNeighborhood(3.0, similarity, model);

» UserBasedRecommender recommender = new GenericUserBasedRecommender(model, neighborhood, similarity);
» List<Recommendedltem> recommendations = recommender.recommend(2, 3);

* for (RecommendedItem recommendation : recommendations) {

System.out.println(recommendation);

=}

public class Recommender {
public static void main(String args[]){
try{
//Creating data model
DataModel datamodel = new FileDataModel(new File("data")); //data

//Creating UserSimilarity object.
UserSimilarity usersimilarity = new PearsonCorrelationSimilarity(datamodel);

//Creating UserNeighbourHHood object.
UserNeighborhood userneighborhood = new ThresholdUserNeighborhood(3.0, usersimilarity, datamodel);

//Create UserRecomender
UserBasedRecommender recommender = new GenericUserBasedRecommender(datamodel,

userneighborhood, usersimilarity);
List<RecommendedItem > recommendations = recommender.-recommend(2, 3);

for (RecommendedItem recommendation : recommendations) {
System.out.printin(recommendation);

}

jcatch(Exception e){}

BIGDATA WITH HIVE

= What is HIVE?

Hive provides an SQL-like
interface to Hadoop.

Hive is a Hadoop
datawarehouse system

Hive is a top level Apache
project.

WHAT HIVE IS NOT?

Hive is not a database.

Hive queries takes minutes even
for small datasets and can’t be
compared to databases like

MySQL/Oracle.

\

Hive does not provide real time
queries as well as row level
updates. It is not suitable for
Online Transaction Processing
(OLTP) systems.

HIVE AR

CHITECTURE

HIVE

Metastore

Thrift Server

= JDBC/ODBC

Driver

C:> (Compiler,

Optimizer,
Executor)

v

(o)

y

(et

HADOOP

Resource Manger

Name Node

-

WORKING OF HIVE

HQL COMMANDS

= Create database mydb;
= Show databases;

= Use mydb;

hive> use mayl9;

Time taken: ©0.017 seconds
hive> set hive.cli.print.current.db
> 5
hive.cli.print.current.db=false
hive> set hive.cli.print.current.db=true;
hive (mayl19)>

HOL COMMANDS

Create table customer(custld INT, custName String, mobile INT)

row format delimited

fields terminated by *;’;

Load data local inpath ‘c:/temp/cust.txt’ into table customer;

Select * from customer;

Select count(*) from customer;

ive (mayl19)> select count(*) from txnrecords;
Query ID = gl_faculty greatlearning_20180519121919_06bd96da-5fb9-47bb-adec-c809700a32d6
otal jobs = 1
Launching Job 1 out of 1
umber of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1518113766572_8510, Tracking URL = http://ip-20-0-21-94.ap-south-1.compute.internal:8088/pro
3766572_8510/
ill Command = /opt/cloudera/parcels/CDH-5.11.2-1.cdh5.11.2.p0@.4/1ib/hadoop/bin/hadoop job -kill job_151811376
adoop job information for Stage-1: number of mappers: 1; number of reducers: 1
018-05-19 12:19:23,126 Stage-1 map = 0%, reduce = 0%
018-05-19 12:19:25,289 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 3.38 sec
apReduce Total cumulative CPU time: 3 seconds 380 msec
Ended Job = job_1518113766572_8510
apReduce Jobs Launched:
IStage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 3.38 sec HDFS Read: 8848463 HDFS Write: 541852 SUCCESS
otal MapReduce CPU Time Spent: 3 seconds 380 msec

ime taken: 12.612 seconds, Fetched: 1 row(s)

HOL COMMANDS

= Create table out(custld INT, custName String, amount INT, product String)
row format delimited
fields terminated by ‘,’;
= Insert overwrite table out
select a.custld, a.custName, b.amount, b.product
from customer a JOIN products b ON a.custld = b.custld;

= Select * from out limit 5;

HOL COMMANDS

= Insert overwrite table outl
select *, case
when age<30 then ‘young’
when age>=30 and age<50 ‘middle’
when age>=50 ‘old’
else ‘others’
end
from out;
= Insert overwrite table out2

select level, sum(amount) from outl group by level;

HOL JOIN AND SUBQUERIES

hive> SELECT ratings.userid, ratings.rating, ratings.tstamp, movies.title, users.gender

> FROM ratings JOIN movies ON (ratings.movieid = movies.movieid)

> JOIN users ON (ratings.userid = users.userid)
> LIMIT 5;

hive> SELECT user _id, rating_count

> FROM (SELECT ratings.userid as user_id, COUNT(ratings.rating) as rating_count
> FROM ratings
> WHERE ratings.rating =5

> GROUP BY ratings.userid) top_raters

> WHERE rating_count > 15;

HQL EXPLAIN PLAM

An explain plan in Hive reveals the MapReduce behind a query.
hive> EXPLAIN SELECT COUNT(*) FROM ratings

> WHERE movieid = 1 and rating = 5;

= OK

ABSTRACT SYNTAX TREE:

(TOK_QUERY (TOK_FROM (TOK_TABREF ratings))

= (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE))
= (TOK_SELECT (TOK_SELEXPR (TOK_FUNCTIONSTAR COUNT)))
= (TOK_WHERE (and (= (TOK_TABLE_OR_COL movieid) 1)

= (= (TOK_TABLE_OR_COL rating) 5)))))

= STAGE DEPENDENCIES:

= Stage-1is a root stage

THANK YOU

