
Dr. SELVA KUMAR S

B.M.S COLLEGE OF ENGINEERING

▪ Introduction to NoSQL

▪ Different NoSQL Products

▪ Exploring MongoDB Java/Ruby/Python statements

▪ Interfacing and Interacting with NoSQL

2

NoSQL databases are currently a hot topic in some parts of computing, with over
a hundred different NoSQL databases.

▪ Data stored in columns and tables

▪ Relationships represented by data

▪ Data Manipulation Language

▪ Data Definition Language

▪ Transactions

▪ Abstraction from physical layer

▪ Applications specify what, not how

▪ Physical layer can change without modifying applications

▪ Create indexes to support queries

▪ In Memory databases

▪ Atomic – All of the work in a transaction completes (commit) or none of it
completes

▪ Consistent – A transaction transforms the database from one consistent state
to another consistent state. Consistency is defined in terms of constraints.

▪ Isolated – The results of any changes made during a transaction are not
visible until the transaction has committed.

▪ Durable – The results of a committed transaction survive failures

▪ NoSQL stands for:

▪ No Relational

▪ No RDBMS

▪ Not Only SQL

▪ NoSQL is an umbrella term for all databases and data stores that don’t follow the
RDBMS principles

▪ A class of products

▪ A collection of several (related) concepts about data storage and manipulation

▪ Often related to large data sets

▪ Non-relational DBMSs are not new

▪ But NoSQL represents a new incarnation

▪ Due to massively scalable Internet applications

▪ Based on distributed and parallel computing

▪ Development

▪ Starts with Google

▪ First research paper published in 2003

▪ Continues also thanks to Lucene's developers/Apache (Hadoop) and Amazon (Dynamo)

▪ Then a lot of products and interests came from Facebook, Netfix, Yahoo, eBay, Hulu, IBM,
and many more

▪ Three major papers were the seeds of the NoSQL movement

▪ BigTable (Google)

▪ Dynamo (Amazon)

▪ Distributed key-value data store

▪ Eventual consistency

▪ CAP Theorem

▪ NoSQL comes from Internet, thus it is often related to the “big data” concept

▪ How much big are “big data”?

▪ Over few terabytes Enough to start spanning multiple storage units

▪ Challenges

▪ Efficiently storing and accessing large amounts of data is difficult, even more considering
fault tolerance and backups

▪ Manipulating large data sets involves running immensely parallel processes

▪ Managing continuously evolving schema and metadata for semi-structured and un-
structured data is difficult

▪ Explosion of social media sites (Facebook, Twitter) with large
data needs

▪ Rise of cloud-based solutions such as Amazon S3 (simple storage
solution)

▪ Just as moving to dynamically-typed languages (Python, Ruby,
Groovy), a shift to dynamically-typed data with frequent schema
changes

▪ Open-source community

▪ The context is Internet

▪ RDBMSs assume that data are

▪ Dense

▪ Largely uniform (structured data)

▪ Data coming from Internet are

▪ Massive and sparse

▪ Semi-structured or unstructured

▪ With massive sparse data sets, the typical storage mechanisms and access methods
get stretched

▪ Large data volumes
▪ Google’s “big data”

▪ Scalable replication and
distribution
▪ Potentially thousands of

machines
▪ Potentially distributed

around the world

▪ Queries need to return
answers quickly

▪ Mostly query, few
updates

▪ Asynchronous Inserts &
Updates

▪ Schema-less

▪ ACID transaction properties
are not needed – BASE

▪ CAP Theorem

▪ Open source development

Discussing NoSQL databases is complicated because there are a variety of types:

▪Sorted ordered Column Store
▪Optimized for queries over large datasets, and store
columns of data together, instead of rows

▪Document databases:
▪pair each key with a complex data structure known as a document.

▪Key-Value Store :
▪are the simplest NoSQL databases. Every single item in the database is stored

as an attribute name (or 'key'), together with its value.

▪Graph Databases :
▪are used to store information about networks of data, such as social connections.

▪ Documents

▪ Loosely structured sets of key/value pairs in documents, e.g., XML, JSON

▪ Encapsulate and encode data in some standard formats or encodings

▪ Are addressed in the database via a unique key

▪ Documents are treated as a whole, avoiding splitting a document into its constituent
name/value pairs

▪ Allow documents retrieving by keys or contents

▪ Notable for:

▪ MongoDB (used in FourSquare, Github, and more)

▪ CouchDB (used in Apple, BBC, Canonical, Cern, and more)

▪ The central concept is the notion of a "document“ which corresponds to a
row in RDBMS.

▪ A document comes in some standard formats like JSON (BSON).

▪ Documents are addressed in the database via a unique key that represents
that document.

▪ The database offers an API or query language that retrieves documents
based on their contents.

▪ Documents are schema free, i.e., different documents can have structures
and schema that differ from one another. (An RDBMS requires that each row
contain the same columns.)

16

{

_id: ObjectId("51156a1e056d6f966f268f81"),

type: "Article",

author: "Derick Rethans",

title: "Introduction to Document Databases with MongoDB",

date: ISODate("2013-04-24T16:26:31.911Z"),

body: "This arti…"

},

{

_id: ObjectId("51156a1e056d6f966f268f82"),

type: "Book",

author: "Derick Rethans",

title: "php|architect's Guide to Date and Time Programming with PHP",

isbn: "978-0-9738621-5-7"

}

▪ Store data in a schema-less way

▪ Store data as maps

▪ HashMaps or associative arrays

▪ Provide a very efficient average running
time algorithm for accessing data

▪ Notable for:

▪ Couchbase (Zynga, Vimeo, NAVTEQ, ...)

▪ Redis (Craiglist, Instagram, StackOverfow,
flickr, ...)

▪ Amazon Dynamo (Amazon, Elsevier,
IMDb, ...)

▪ Apache Cassandra (Facebook, Digg,
Reddit, Twitter,...)

▪ Voldemort (LinkedIn, eBay, …)

▪ Riak (Github, Comcast, Mochi, ...)

▪ Data are stored in a column-oriented way

▪ Data efficiently stored

▪ Avoids consuming space for storing nulls

▪ Columns are grouped in column-families

▪ Data isn’t stored as a single table but is stored by column families

▪ Unit of data is a set of key/value pairs

▪ Identified by “row-key”

▪ Ordered and sorted based on row-key

▪ Notable for:

▪ Google's Bigtable (used in all
Google's services)

▪ HBase (Facebook, StumbleUpon,
Hulu, Yahoo!, ...)

▪ Graph-oriented

▪ Everything is stored as an edge, a node or an attribute.

▪ Each node and edge can have any number of attributes.

▪ Both the nodes and edges can be labelled.

▪ Labels can be used to narrow searches.

20

▪ Issues with scaling up when the dataset is just too big

▪ RDBMS were not designed to be distributed

▪ Traditional DBMSs are best designed to run well on a “single” machine

▪ Larger volumes of data/operations requires to upgrade the server with faster
CPUs or more memory known as ‘scaling up’ or ‘Vertical scaling’

▪ NoSQL solutions are designed to run on clusters or multi-node database
solutions

▪ Larger volumes of data/operations requires to add more machines to the
cluster, Known as ‘scaling out’ or ‘horizontal scaling’

▪ Different approaches include:

▪ Master-slave

▪ Sharding (partitioning)

▪ RDBMSs are based on ACID (Atomicity, Consistency, Isolation, and Durability)
properties

▪ NoSQL
▪ Does not give importance to ACID properties
▪ In some cases completely ignores them

▪ In distributed parallel systems it is difficult/impossible to ensure ACID properties
▪ Long-running transactions don't work because keeping resources blocked for a

long time is not practical

▪Acronym contrived to be the opposite of ACID
▪ Basically Available,
▪ Soft state,
▪ Eventually Consistent

▪Characteristics
▪ Weak consistency – stale data OK
▪ Availability first
▪ Best effort
▪ Approximate answers OK
▪ Aggressive (optimistic)
▪ Simpler and faster

A congruent and logical way for assessing the problems involved in
assuring ACID-like guarantees in distributed systems is provided by the
CAP theorem

At most two of the following three can be maximized at one time

▪ Consistency
▪ Each client has the same view of the

data

▪ Availability
▪ Each client can always read and write

▪ Partition tolerance
▪ System works well across distributed

physical networks

▪ CAP theorem – At most two properties on three can be
addressed

▪ The choices could be as follows:

1. Availability is compromised but consistency and partition
tolerance are preferred over it

2. The system has little or no partition tolerance. Consistency
and availability are preferred

3. Consistency is compromised but systems are always available
and can work when parts of it are partitioned

C A

P

• Consistency and Availability is not

“binary” decision

• AP systems relax consistency in

favor of availability – but are not

inconsistent

• CP systems sacrifice availability for

consistency- but are not unavailable

• This suggests both AP and CP

systems can offer a degree of

consistency, and availability, as

well as partition tolerance

▪ There is no perfect NoSQL database

▪ Every database has its advantages and disadvantages

▪ Depending on the type of tasks (and preferences) to accomplish

▪ NoSQL is a set of concepts, ideas, technologies, and software
dealing with

▪ Big data

▪ Sparse un/semi-structured data

▪ High horizontal scalability

▪ Massive parallel processing

▪ Different applications, goals, targets, approaches need different
NoSQL solutions

▪ Where would I use a NoSQL database?

▪ Do you have somewhere a large set of uncontrolled,
unstructured, data that you are trying to fit into a RDBMS?
▪ Log Analysis

▪ Social Networking Feeds (many firms hooked in through
Facebook or Twitter)

▪ External feeds from partners

▪ Data that is not easily analyzed in a RDBMS such as time-
based data

▪ Large data feeds that need to be massaged before entry into
an RDBMS

• Create account : Datastax.com

29

30

31

32

33

• CREATE KEYSPACE − Creates a KeySpace in Cassandra.
• USE − Connects to a created KeySpace.
• ALTER KEYSPACE − Changes the properties of a KeySpace.
• DROP KEYSPACE − Removes a KeySpace
• CREATE TABLE − Creates a table in a KeySpace.
• ALTER TABLE − Modifies the column properties of a table.
• DROP TABLE − Removes a table.
• TRUNCATE − Removes all the data from a table.
• CREATE INDEX − Defines a new index on a single column of a table.
• DROP INDEX − Deletes a named index.

34

• INSERT − Adds columns for a row in a table.
• UPDATE − Updates a column of a row.
• DELETE − Deletes data from a table.
• BATCH − Executes multiple DML statements at once.

• CQL Clauses
• SELECT -− This clause reads data from a table

35

▪ describe keyspaces;

▪ or desc keyspaces;

▪ use demo;

▪ describe tables;

▪ describe table emp;

▪ describe type emp;

36

▪ create table student (name text, usn text, mob int, id int, primary key(id));

▪ desc student;

▪ select * from student;

▪ insert into student(id, usn,name,mob) values (1, '1bm20cs001','abc',2334233423);

▪ update student set name='xyz' where id=1;

▪ update student set name='xyz' where id=2; // no error instead create new row

37

▪ CREATE TABLE emp(emp_id int PRIMARY KEY, emp_name text, emp_city text,
emp_sal varint, emp_phone varint);

▪ Select * from emp;

▪ INSERT INTO emp (emp_id, emp_name, emp_city,

emp_phone, emp_sal) VALUES(1,'ram', 'Hyderabad', 9848022338, 50000);

▪ UPDATE emp SET emp_city='Delhi',emp_sal=50000 WHERE emp_id=2;

▪ DELETE emp_sal FROM emp WHERE emp_id=3;

38

▪ uuid() function which is very important to insert value and to uniquely generates
“guaranteed unique” UID value Universally.

▪ Create table function4(Id uuid primary key, name text);

▪ Insert into function4 (Id, name) values (1, ‘Ashish’); // fails

▪ Insert into function4(Id, name) values (now(), ‘Ashish’); //correct

39

▪ Alter table emp add (emails set<text>, frameworks list<text>, previous_jobs
map<text, int>);

▪ INSERT INTO emp (emp_id, emp_name, emp_city, emp_phone, emp_sal, emails,
frameworks,previous_jobs) VALUES(6,'ram', 'Hyderabad', 9848022338, 50000,
{‘ram@gmail.com’,’ram@hotmail.com’},
[‘C#’,’java’,’node.js’],{‘Amazon’:4,’TCS’:3});

40

▪ In programming language to connect application with database there is a

programming Pattern.

▪ Three Easy steps are following :

▪ Create a connection (which is called a Session)

▪ Use the session to execute the query.

▪ Close the connection/session.

41

42

43

▪ MongoDB Atlas

44

45

46

47

48

49

50

51

52

53

54

55

56

57

▪ Show dbs;

▪ Use database_name;

▪ Db; \\ shows current database in

▪ db.createCollection(‘democollection’)

▪ Or

▪ db.slstudent.insert({name:’selva’})

▪ Show collections;

▪ db.slstudent.find()

▪ db.createCollection(‘emp’,{capped:true, size:5242880,max:5})

▪ db.emp.insert({empid:1, name:“selva”, exp:{company:’TCS’, exp:4}})

▪ db.emp.find()

58

▪ Var myemp = [{empid:1, name:“selva”},{empid:2, name:“kumar”}]

▪ db.emp.insert(myemp) //bulk insert

▪ db.emp.find()

▪ db.emp.update({name:’selva’},{$set:{“name”:”skumar”}})

▪ db.emp.find()

▪ db.emp.update({name:’selva’},{$set:{“name”:”skumar”}}, {multi:true})

▪ db.emp.update({name:’selva’},{$set:{“name”:”skumar”}}, {upsert:true})

59

▪ db.emp.remove({“name”:”selva”})

▪ db.emp.find({“name”:”selva”})

▪ db.emp.find().limit(2)

▪ db.emp.find().sort({name:-1}) // -1: descending order /1:Ascending order

▪ db.emp.find({empid:{$gt:1}})

▪ db.emp.find({empid : {$in:[3,6]}})

▪ db.emp.getIndexes()

▪ db.emp.createIndex({“name”:1})

60

▪ db.emp.aggregate([{“$match”:{“section”:”A”}}])

▪ db.emp.aggregate([{“$match” :{ $and:[{“section”:”A”},{Marks: {“$gt”:70}}}])

▪ db.emp.aggregate([{“$project”:{name:1 ,section:1}}]) \\ shows id , name and
section

▪ db.emp.aggregate([{“$project”:{_id:0, name:1 ,section:1}}]) \\ shows only name
and section id is not visible

▪ db.emp.aggregate([{“$match”:{“section”:”A”}}, {“$project”:{_id:0, name:1
,section:1}}])

▪ db.emp.aggregate([{“$group”:{“_id”: {“section”: “$section”},
“Totalmarks”:{“$sum”:”$Marks”}}}])

61

62

▪ import pymongo

▪ from pymongo import MongoClient

▪ cluster =MongoClient(" mongodb://selvaBMS:<password>@ac-7z57wy5-shard-00-
00.eli2h0j.mongodb.net:27017,ac-7z57wy5-shard-00-01.eli2h0j.mongodb.net:27017,ac-7z57wy5-shard-
00-02.eli2h0j.mongodb.net:27017/?ssl=true&replicaSet=atlas-6tn8d0-shard-
0&authSource=admin&retryWrites=true&w=majority")

▪ db = cluster["selva-test"]

▪ collection=db["emp"]

▪ post={"name":"selva", "email":"selva.cse@bmsce.ac.in"}

▪ collection.insert_one(post)

63

▪ Redis stands for REmote DIctionary Server.

▪ Redis is a No SQL database which works on the concept of key-value
pair.

▪ Redis is a flexible, open-source (BSD licensed), in-memory data
structure store, used as database, cache, and message broker.

▪ Redis supports various types of data structures like strings, hashes,
lists, sets, sorted sets and bitmaps.

▪ Redis is an advanced key-value store to improve performance when
serving data that is stored in system memory.

64

▪ Very flexible

▪ No schemas and column names

▪ Very fast : Can perform around 110,000 SETs per second and about 81,000 GETs
per second.

▪ Rich Datatype support

▪ Caching and Disk persistence

65

▪Login and cookie caching

▪Shopping cart

▪Web page caching

▪Database row caching

▪Web page Analytics

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

▪ SET name “selva”

▪ GET name

▪ SET age 40

▪ GET age

▪ DEL age

▪ GET age

▪ EXISTS name

▪ KEY *

▪ flushall

82

▪ Ttl name

▪ Expire name 10

▪ Setex name 10 selva //set string for time period

▪ Lpush friends kumar //List

▪ Lrange friends 0 -1

▪ Rpush friends ram

▪ Lpop friends

▪ SADD name “kumar ram” //sets

▪ SMEMBERS name

83

▪ HMSET DemoHash name "redis tutorial" // Hashes

description "redis basic commands for caching" likes 20 visitors 23000

▪ HGETALL DemoHash

▪ ZADD tutorials 1 redis // Sorted Sets

▪ ZADD tutorials 2 mongodb

▪ ZRANGE tutorials 0 10 WITHSCORES

84

▪ <?php

▪ //Connecting to Redis server on localhost

▪ $redis = new Redis();

▪ $redis->connect('127.0.0.1', 6379);

▪ echo "Connection to server sucessfully";

▪ //check whether server is running or not

▪ echo "Server is running: ".$redis->ping();

▪ ?>

85

▪ <?php

▪ //Connecting to Redis server on localhost

▪ $redis = new Redis();

▪ $redis->connect('127.0.0.1', 6379);

▪ echo "Connection to server sucessfully";

▪ //set the data in redis string

▪ $redis->set("tutorial-name", "Redis tutorial");

▪ // Get the stored data and print it

▪ echo "Stored string in redis:: " .$redis→get("tutorial-name");

▪ ?>

86

▪ <?php

▪ $redis = new Redis();

▪ $redis->connect('127.0.0.1', 6379); //Connecting to Redis server on localhost

▪ echo "Connection to server sucessfully";

▪ //store data in redis list

▪ $redis->lpush("tutorial-list", "Redis");

▪ $redis->lpush("tutorial-list", "Mongodb");

▪ $redis->lpush("tutorial-list", "Mysql");

▪ // Get the stored data and print it

▪ $arList = $redis->lrange("tutorial-list", 0 ,5);

▪ echo "Stored string in redis:: ";

▪ print_r($arList);

▪ ?>

87

▪ import redis

▪ pool = redis.ConnectionPool(host='localhost', port=6379, db=0)

▪ redis = redis.Redis(connection_pool=pool)

▪ redis.set('mykey', 'Hello from Python!')

▪ value = redis.get('mykey')

▪ print(value)

▪ redis.zadd('vehicles', {'car' : 0})

▪ redis.zadd('vehicles', {'bike' : 0})

▪ vehicles = redis.zrange('vehicles', 0, -1)

▪ print(vehicles)

88

▪ Neo4j is one of the popular Graph Databases and Cypher Query Language (CQL).
▪ Graph database is a database used to model the data in the form of graph.
▪ Other Graph Databases are Oracle NoSQL Database, OrientDB, HypherGraphDB,

GraphBase, InfiniteGraph, and AllegroGraph.
▪ Graph databases store relationships and connections as first-class entities.

89

90

▪ Flexible data model

▪ Real-time insights

▪ High availability

▪ Connected and semi structured data

▪ Easy retrieval

▪ Cypher Query Language

▪ No Joins

91

92

93

94

95

96

97

98

99

100

101

102

103

▪ CREATE (n)

▪ MATCH (n) RETURN n

▪ CREATE (n),(m)

▪ MATCH(n) RETURN n limit 2

▪ MATCH (n) WHERE id(n)=1 RETURN n

▪ MATCH (n) WHERE id(n)<=6 RETURN n

▪ MATCH (n) WHERE id(n) IN [1,2,6] RETURN n

104

▪ MATCH (n) WHERE id(n)=1 DELETE n

▪ MATCH (n) RETURN n

▪ MATCH (n) WHERE id(n) IN[2,3] DELETE n

▪ MATCH (n) DELETE n

105

▪ //WITH LABLE

▪ CREATE (n:Person)

▪ MATCH (n) WHERE n:Person RETURN n

▪ CREATE (n:Person:Indian) // 2 Label

▪ MATCH (n) WHERE n:Person:Indian RETURN n

▪ MATCH (n) WHERE n:Person OR n:Indian RETURN n

▪ MATCH (n) REMOVE n:Person RETURN n

▪ MATCH (n) WHERE ID(n) IN[2,3] REMOVE n:Employee RETURN n

106

▪ //Update

▪ MATCH (n) WHERE ID(n)=0 REMOVE n:manager SET n:Director RETURN n

▪ //Create Node with property

▪ CREATE (x:Book{title:NoSQL}) RETURN x;

▪ CREATE (x:Book{title:"NoSQL",author:"abc",publisher:"wrox"}) RETURN x;

▪ MATCH (n:Book{author:"abc"}) RETURN n;

▪ MATCH (n:Book) WHERE n.price <1000 AND (n.author:"abc" OR n.author:"xyz")
RETURN n;

107

▪ //Create Relationship

▪ CREATE (Dhawan:player{name: "Shikar Dhawan", YOB: 1985, POB: "Delhi"})

▪ CREATE (Ind:Country {name: "India"})

▪ CREATE (Dhawan)-[r:BATSMAN_OF]->(Ind)

▪ RETURN Dhawan, Ind

▪ MATCH (a:player), (b:Country) WHERE a.name = "Shikar Dhawan" AND b.name =
"India"

▪ CREATE (a)-[r: BATSMAN_OF]->(b)

▪ RETURN a,b

108

109

