

CNN

- A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning algorithm which can take in an input image, assign importance (learnable weights and biases) to various aspects/objects in the image and be able to differentiate one from the other.
- The pre-processing required in a ConvNet is much lower as compared to other classification algorithms.
- ConvNets have the ability to learn these filters/characteristics

Reusability, Receptive field

- A ConvNet is able to successfully capture the Spatial and Temporal dependencies in an image through the application of relevant filters.
- The architecture performs a better fitting to the image dataset due to the reduction in the number of parameters involved and reusability of weights.
- CNN analogous to that of the connectivity pattern of Neurons in the Human Brain and was inspired by the organization of the Visual Cortex

Input Image

In the figure, we have an RGB image which has been separated by its three color planes — Red, Green, and Blue. There are a number of such color spaces in which images exist — Grayscale, RGB, HSV, CMYK, etc.

Max Pooling also performs as a **Noise Suppressant**. It discards the noisy activations altogether and also performs de-noising along with dimensionality reduction. On the other hand, Average Pooling simply performs dimensionality reduction as a noise suppressing mechanism. Hence, we can say that Max Pooling performs a lot better than Average Pooling.